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Abstract

This research aims at the development of a heuristic approach to select the best set of product 
families and their production scheduling in Reconfi gurable Manufacturing Systems when exact 
methodologies cannot offer a solution, due to the complexity of the instances may requires an 
excessive computing time. For tackling the problem, a specifi c and quick heuristic variant of the 
Nearest Neighbour method has been developed and implemented. Solutions to the problem are 
signifi cantly improved when they are used as part of a tabu search algorithm, within a reasonable 
computing time. These results have been improved applying a diversifi cation rule to the tabu search 
procedure.
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1. Introduction

In mid-nineties the concept of Reconfi gurable Manufacturing Systems (RMSs) emerged, since 
the need for systems that are capable of being quickly adapted to changing market demands, 
by providing exactly the needed functionality and capacity at any time, has been realised. A 
RMS is a manufacturing system designed for rapid changes in structure, hardware and software 
components in order to adjust production capacity and functionality within a part family in 
response to sudden changes in market (Koren et al., 1999).

The working of a RMS starts with the classifi cation of products into families, each of which 
is a set of similar products. Several sets of families can be formed from the products that a 
company launches to the market. The options for grouping those products are diverse. One of 
those options is to group products into a dendogram, which represents the families’ formation 
based on product’s similarities. The most similar products are grouped together. The dendogram 
indicates, through a percentage, the similarity among the products in the family. Figure 1 shows 
an example of dendogram for three products which presents three sets of families, indicated by 
three levels. The fi rst one (L=1) is composed of three families, each of which is composed of 
one product. The second one (L=2) is composed of two families, and the last one is composed 
of one family.
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Figure 1. Example of dendogram for three products

The manufacturer selects one family to produce, and the RMS is confi gured to produce the 
selected family. Once this family is fi nished, the RMS is confi gured to effectively produce 
the following, and so forth (Xiaobo et al., 2000). Thus, the RMS confi guration changes for 
producing different families. The rationale is to minimise the costs associated to confi gure the 
manufacturing system from producing one family to the following and the costs associated with 
the under utilisation of the resources of each machine while producing those families (Racero 
et al., 2005).

This research aims at the development of a heuristic approach between a variant of the nearest 
neighbour heuristic and tabu search to selects the best set of product families and their production 
scheduling when exact methodologies cannot offer a solution, due to the complexity of the 
instances may requires an excessive computing time.

2. Optimal Selection and Scheduling of Product Families in RMS

The RMS is confi gured to produce one family with both functionality and quantity required. As 
stated before, once a family is manufactured, the RMS is confi gured to produce the following 
one. When the last family has been completed, the system is reconfi gured in order to repeat 
the process again. In each change of the confi guration, the manufacturing company incurs in a 
changeover cost, which depends on the current confi guration and the destination confi guration 
(Xiaobo et al., 2000). The manufacturing system has to adapt its capacity and functionality to 
the production of each family. Therefore, in each confi guration of the system, the capacity of 
the machines and the utilisation of their functionalities are parameters to optimise. A RMS tends 
to the usage of the full capacity and functionalities of the installed machines.

From the dendogram, the selection of families can be made. There are three different levels 
in Figure 1, each with different families. Upper levels are composed of several families with 
few products and high similarity among them. On the contrary, families in bottom levels are 
composed of few families with lots of products with low similarity.

The selection of families can be solved by calculating the cost of each level in the dendogram, 
and the level with the lowest cost will be selected. Thus, all the possible solutions are evaluated. 
A high number of products involve lots of calculations, which may require years for solving. 
Therefore, for the selection of the families, a model that includes the key parameters expressed 
above and facilitates this selection is required.

This problem is quite similar to the Travelling Salesman Problem (TSP) which seeks to identify 
a Hamiltonian path (a tour) that minimise the distance travelled by the salesman. The goal of 
minimising total distance can be changed into minimising total cost or time. At fi rst glance, 
several similarities with our problem arise. First, cities in TSP can be compared to product 
families in RMS. Second, the goal in TSP is to minimise the total distance/cost/time required 
for completing the tour, whereas in RMS the goal is to minimise the total cost. Finally, the 
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salesman in TSP has to fi nish in the initial city, whereas a RMS is confi gured for producing 
the fi rst family when the last one has fi nished. It is well known that the TSP is a combinatorial 
optimisation problem of NP class. Thus, the selection and scheduling of product families in 
RMS is a NP class problem too.

The mathematical model proposed (Racero et al., 2005) solves a TSP in each level of the 
dendogram, identifying the tour that presents minimum cost in each level. Then, the model 
compares the best results in each level and selects the best of them. Therefore, the problem 
to solve is a multi-level TSP. The model is based on the following assumptions: machines 
are able to support any demand of products, a unique process plan exists for each individual 
component to manufacture, and each operation or set of operations are carried out in one 
specifi c machine. Its objective is to select the level of the dendogram that minimises the cost 
of the system reconfi guration and the costs due to an under-utilisation of the resources of the 
machines while product families are being manufactured. The model takes into account the 
following assumptions:

− One level of the dendogram is only selected.

− All families of the selected level are manufactured, and none from the other levels.

− In each level, families are manufactured one by one carrying out a production order. At the 
end, the system is reconfi gured to manufacture the initial family. It does not matter which 
the initial family is because cost associated to the production order does not exist.

− Sub-routes that form a non-Hamiltonian path are not allowed.

Due to the lack of existing reconfi gurable systems, some instances from the literature regarding 
Cellular Manufacturing Systems (CMSs) have been modifi ed in order to be taken as RMS 
instances. Data in CMS instances are machines and parts. Machines have been converted into 
products, and parts into product components. Besides, the same number of reconfi gurable 
machines than products is selected, and the number of machine modules is twice than machines. 
Reference (Racero et al., 2005) tested the model in a batch of 35 instances of RMS which was 
solved optimally applying the mathematical model previously outlined.

Figure 2. Tendency of CPU time with the number of products (Racero et al., 2005)

The CPU time (in hh:mm:ss format) required for solving the model was increasing with the 
number of products. Those instances were solved with linear programming software, using a 
CPU at 3.06 GHz PC. Figure 2 presents the tendency of CPU time with the number of products 
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for all the instances previously referred. Results of the objective function are deployed in Table 
2 (Optimal method).

As can be observed, the tendency of CPU time with the number of products is increased 
hardly when the number of products is higher than 25. Therefore, the model is appropriated for 
problems with 25 products or less. This result shows that an approach based on heuristics must 
be developed for solving problems with more than 25 different products.

3. Metaheuristic Procedures for Tackling the Problem

Due to the existing diffi culty for solving combinatorial problems in an optimal way, the 
development and implementation of heuristic procedures able to provide acceptable solutions 
within a reasonable computing time become essential (Adenso-Diaz et al., 1996). Heuristic 
algorithms frequently use any kind of specifi c knowledge of the problem to solve in order to 
build a solution or to improve an existing one. As commented before, the problem we face 
is similar to the TSP. As reconfi guration from a family (i) to family (j) is different than the 
opposite way, the problem is an asymmetric TSP (ATSP), and the heuristics that solve it may be 
divided in the following categories:

− Specifi c heuristics for the ATSP

− General heuristics or metaheuristics applied to the ATSP

Some of them offer solutions near to the optimal one. Therefore, if a small deviation from the 
optimal solution is acceptable, these techniques can be used as solution methods (Helsgaun, 
2000).

3.1. Specifi c Heuristics for the ATSP

These heuristics are simple algorithms that usually require relatively short computational times. 
Generally speaking, they may be divided into the following four categories (Helsgaun, 2000): 
(a) Hamiltonian cycle construction heuristics, (b) Hamiltonian cycle improving heuristics, (c) 
Heuristics based on patching cycles together, and (d) Hybrid heuristics. Considering a graph 
composed of nodes (cities) and arcs (distances among cities), a cycle is a path in which the 
same arc is not travelled twice, and it fi nishes in the initial city. A Hamiltonian cycle, besides 
the above requirements, has to cover all the nodes only once.

Tour construction heuristics add a city in each iteration of the algorithm until a Hamiltonian 
cycle has been covered. In RMS, we have a multi-level TSP problem and therefore each step 
of the algorithm adds one product family to schedule, in each level of the dendogram. They are 
very fast algorithms, frequently used for generating an approximate solution when the time is 
limited, obtaining a starting point for the application of other algorithms, or even obtaining a 
upper bound for exact algorithms. A famous heuristic is the Nearest Neighbour (Rosenkrantz 
et al., 1977) which starts choosing a random city and then successively goes to the nearest 
unvisited city. Some other heuristics are Greedy, random insertion, or Clark-Wright heuristic.

3.2. General Heuristics Applied to the ATSP

In the last years, several researchers have concentrated in the development of a specifi c class of 
algorithms called metaheuristics. They are based on general frameworks which can be applied 
to diverse optimisation problems with little modifi cations (Gambardella and Dorigo, 2000). 
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Some examples are Simulated Annealing, Genetic Algorithms, Tabu Search, GRASP, Neural 
Networks and Ant Colonies Optimisation.

To solve the problem of selecting and sequencing product families in RMS a tabu search will 
be applied because it has demonstrated to be a useful optimisation technique to solve different 
combinatorial problems.

4. Heuristics to Solve the RMS Problem

In order to solve the RMS problem, a specifi c heuristic based on the nearest neighbour method 
has been developed and implemented. Results have been compared to those obtained with the 
exact method outlined in section 2. Besides, a general metaheuristic based on tabu search has 
been implemented using the solutions obtained with the specifi c heuristic as initial solutions of 
the tabu search algorithm.

4.1. Variant of the Nearest Neighbour Heuristic

This procedure starts by evaluating the reconfi guration costs between each pair of product 
families. Then, the minimum cost is chosen to be used as the starting point. Once scheduled 
the fi rst pair of families, the following family to add to the sequence is the not-yet-scheduled-
family with minimum reconfi guration cost. The procedure fi nishes when all product families are 
scheduled in one single sequence. For example, considering four product families to schedule 
{A, B, C, D} with the reconfi guration costs between them presented in Table 1.

Table 1. Reconfi guration costs between families

A B C D
A - 5 2 7
B 2 - 3 1
C 9 5 - 8
D 6 4 6 -

The sequence that presents the minimum reconfi guration cost is {B-D} and it is chosen as the 
fi rst pair of families to schedule. From D, the following possible family with the minimum 
reconfi guration cost is chosen. There are two possible families to choose {A, C} and both have 
the same cost, so one of them is chosen randomly for example family A, and the current sequence 
is {B-D-A}. As there is only one family to sequence, it is allocated at the end. Therefore, the 
fi nal sequence obtained with this heuristic is {B-D-A-C}.

The heuristic does not take into account the under utilisation cost because it is independent of 
the generated sequence.

Table 2 (SH columns) shows the results obtained with the implementation of the developed 
procedure in the same batch of instances used in (Racero et al., 2005) which optimal solutions 
are known. Besides, deviation percentages of the solutions gained with the heuristic regarding 
optimal solutions are shown too. In all the cases, the computing time required to solve the 
instances are less than one second.

Results showed in Table 2 (SH columns) can be considered as satisfactory because the heuristic 
offers good solutions in less than one second to NP problems. In 19 of the 35 instances the 
deviation from the optimum is less than 5%, in 28 instances deviation is less than 10% and all 
of them present a deviation lower to 18%. As an average value, the deviation of the instances 
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from optimum is 5.85%. It must be noticed that to obtain results with the application of the 
optimal method, the computing time required becomes not feasible with more than 25 products 
to group. This heuristic can offer a solution very quickly to the RMS problem with any number 
of products to group.

4.2. Tabu search

Tabu search selects the best possible movement in each step, allowing a solution worse than 
the actual one that permits to escape from a local optimum and to continue the search for better 
solutions. In order to avoid the return at a former local optimum and to create a cycle, some 
movements are classifi ed as “tabu” in the next iterations. 

The neighbourhood of the solution has been generated with inserting movements, which consists 
of including a scheduled family in a different position of the sequence. For example, in the 
sequence {A-B-C-D} family A can be inserted in the third position, being the new sequence {B-
C-A-D}. In order to generate the neighbourhood, each family is inserted in the other positions 
of the sequence and therefore, the size of the neighbourhood for a set of n product families is 
n(n-1). As intensifi cation rule, the algorithm searches in the neighbourhood and selects as the 
new solution the sequence of families with the fewest cost, though it may be worse than the 
actual sequence. Two possible ways to fi nish the algorithm have been implemented: a certain 
number of operations and a certain number of iterations without improving the solution. The 
maximum number of operations has been fi xed according with the number of families: n3+n2, 
and the number of iterations without improving is a percentage of n3+n2. But even this number 
may be quite small for escaping from a local optimum (even nn may be not enough). The escape 
from huge valleys has been developed with the use of a diversifi cation rule. This rule continues 
the search in different areas by generating random sequences and choosing the best one.

It is well known that tabu list size affects the performance of the heuristic (Glover, 1989). The 
literature presents some researches referring to the determination of the optimal size of tabu list 
for the symmetric TSP with n cities. Glover (1989) investigated four different tabu list sizes, 
ranging from n/4 to n. The tabu list size to use in this research will be the number of products 
to group.

Tabu list does not store the whole sequence, but some attributes of the manufacturing sequence. 
They are the family that changes its position and the position to insert the family.

Note that a RMS instance is composed of several sets of families, in different levels of the 
dendogram. Therefore, an ATSP in each level of the dendogram must be solved, applying the 
above approach. As all possible sequences in the same level have the same under-utilisation 
costs, they are not used in the described procedure but it is added at the end. Once costs have 
been obtained for each level, the procedure fi nishes selecting the best of them.

The implemented procedure tries to improve the solutions offered by the specifi c heuristic. 
Once this has been obtained, the intensifi cation process starts by generating the neighbourhood 
of the solution. The new sequences are evaluated and the best one is selected in each step. The 
process fi nishes when n3+n2 iterations have been completed. The algorithm has been storing the 
best solution found in each step, and gives it back when fi nishing. Results are shown in Table 
2.

Results in Table 2 show that the implementation of tabu search improves, or make equal in the 
worst case, the solution obtained with the specifi c heuristic for each instances. The instance 
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average deviation from the optimum gained with the tabu search approach is 1.83%, quite 
better than the 5.85% obtained with the specifi c heuristic. An optimal stopping condition is 
fundamental to obtain a satisfactory solution with low computing time.

Table 2. Solution of instances applying specifi c heuristic and tabu search

Reference
Optimal 
method 

†

Specifi c 
heuristic 

(SH)

Tabu 
search 
(TS)

% deviation 
SH from 
optimum

% deviation TS 
from optimum

CPU 
time
(TS)

SHA95A 85 87 85† 2.35 0.00 0:00:01
SHA95B 88 88† 88† 0.00 0.00 0:00:02
COA88 89 89† 89† 0.00 0.00 0:00:04
AKT96 126 129 128 2.38 1.59 0:00:08

CHE96C 128 138 128† 7.81 0.00 0:00:05
SHA95C 158 167 159 5.70 0.63 0:00:04

SEI89 143 144 143† 0.70 0.00 0:00:07
MCC72A 79 79† 79† 0.00 0.00 0:00:12
VAK90 166 166† 166† 0.00 0.00 0:00:12
CRA96 150 152 150† 1.33 0.00 0:00:24
ASK87 159 163 159† 2.52 0.00 0:00:34
CHA82 98 102 98† 4.08 0.00 0:00:44

SHA95D 78 82 78† 5.13 0.00 0:00:45
CHE95 136 148 136† 8.82 0.00 0:00:46

BOC91A 340 367 350 7.94 2.94 0:01:18
BOC91B 242 250 244 3.31 0.83 0:01:08
BOC91C 211 224 212 6.16 0.47 0:01:07
BOC91D 302 315 302† 4.30 0.00 0:01:19
BOC91E 240 240† 240† 0.00 0.00 0:01:15
BOC91F 252 260 252† 3.17 0.00 0:01:11
BOC91G 286 297 286† 3.85 0.00 0:01:09
BOC91H 294 301 301 2.38 2.38 0:01:08
BOC91I 241 275 253 14.11 4.98 0:01:08
BOC91J 222 255 232 14.86 4.50 0:01:12
SRI90 243 255 243† 4.94 0.00 0:01:07
KIN80 353 368 362 4.25 2.55 0:01:07
ASK91 118 122 120 3.39 1.69 0:03:19

VEN90A 305 322 305† 5.57 0.00 0:04:32
CHE96A 341 392 364 14.96 6.74 0:04:17
CHE96B 278 325 299 16.91 7.55 0:04:10

NG96 248 292 290 17.74 16.94 0:04:08
VEN90B 126 134 128 6.35 1.59 0:07:52
KUM86 364 412 369 13.19 1.37 0:09:44
ADI97 497 529 516 6.44 3.82 0:20:49

MCC72B 541 596 559 10.17 3.33 0:25:28

Studying the quality of these solutions, it has been realised that the best solutions are obtained in 
the early iterations. Thus, thirteen instances (composed of a total sum of 202 levels) have been 
selected randomly in order to study the iteration in which the best solution is found. Results have 
shown that the best solution has been found doing less than 12% of the upper bound iterations 
number (n3+n2). Therefore, the batch of instances can be solved with the stopping criteria of a 
maximum number of iterations without improving the best solution found. For assuring more 
iterations than the 12% obtained experimentally, this condition has been set to 30%. Results 
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have demonstrated that the same results are obtained, and consequently saving computing time. 
Figure 3 shows how difference in computing time with and without the stopping condition, and 
how it increases together with the number of products to group.

Figure 3. Difference in computing time due to the stopping condition

A diversifi cation rule has been developed with the aim of searching in other areas of the solution 
space when it is diffi cult to overcome huge local optima. This rule is implemented by generating 
1000 random solutions when the best solution has not improved after a certain number of 
iterations. The heuristic evaluates all of them and selects the best one as the current solution. 
The stopping condition and the diversifi cation rule can be implemented together only if the 
number of iterations without improving the best solution found is smaller than the stopping 
condition. If the new area does not improve the best solution, new searches in other areas can 
be carried out.

With the aim of obtaining the best number of iterations without improving to implement the rule, 
some experiments have been carried out. Experiments have been applied with different numbers 
of iterations without improving: 10, 5, 1, and 0.5 % of the maximum number of iterations. As a 
comparative measure, the sum of deviation from the optimum of the previous batch of instances 
has been used. As computing time are similar, results show up that the best is to use 1%. Thus, 
the optimum number of iterations without improving the current solution before applying the 
diversifi cation rule is 0.01(n3+n2).

The implementation of this rule improves previous solutions in most of the cases, as it is shown 
in Table 3. Due to the random condition of the diversifi cation rule, instances have been solved 
fi ve times to obtain the results.

Table 3 has shown the successive improvements gained when applying the heuristic approach to 
solve the RMS problem, from the implementation of the specifi c heuristic to the implementation 
of the heuristic approach based on tabu search with diversifi cation rule. In the last case, the 
optimal solution is obtained in 31 of the 35 instances, with an instance average deviation from 
the optimum of 0.26% within an admissible computing time.

5. Conclusion

This paper has presented a heuristic approach to select and sequence product families in RMS. 
This procedure is based on a variant of the nearest neighbour heuristic and a tabu search algorithm 
with both intensifi cation and diversifi cation rules together with a stopping condition. The 



International Conference on Industrial Engineering & Industrial Management - International Conference on Industrial Engineering & Industrial Management - CIO 2007 1609

intensifi cation rule has been developed in a neighbourhood created with inserting movements.

Table 3. Solution of instances applying the diversifi cation rule

Reference Optimal 
method †

Specifi c 
heuristic 

(SH)

Tabu 
search 
(TS)

TS with 
div. rule 
(TSDR)

% deviation 
(TSDR) from 

optimum

CPU time 
(TSDR)

SHA95A 85 87 85† 85† 0.00 0:00:01
SHA95B 88 88† 88† 88† 0.00 0:00:02
COA88 89 89† 89† 89† 0.00 0:00:02
AKT96 126 129 128 126† 0.00 0:00:06

CHE96C 128 138 128† 128† 0.00 0:00:02
SHA95C 158 167 159 159 0.63 0:00:02

SEI89 143 144 143† 143† 0.00 0:00:04
MCC72A 79 79† 79† 79† 0.00 0:00:05
VAK90 166 166† 166† 166† 0.00 0:00:06
CRA96 150 152 150† 150† 0.00 0:00:08
ASK87 159 163 159† 159† 0.00 0:00:13
CHA82 98 102 98† 98† 0.00 0:00:16

SHA95D 78 82 78† 78† 0.00 0:00:16
CHE95 136 148 136† 136† 0.00 0:00:22

BOC91A 340 367 350 340† 0.00 0:00:28
BOC91B 242 250 244 242† 0.00 0:00:28
BOC91C 211 224 212 211† 0.00 0:00:28
BOC91D 302 315 302† 302† 0.00 0:00:24
BOC91E 240 240† 240† 240† 0.00 0:00:29
BOC91F 252 260 252† 252† 0.00 0:00:26
BOC91G 286 297 286† 286† 0.00 0:00:24
BOC91H 294 301 301 294† 0.00 0:00:35
BOC91I 241 275 253 241† 0.00 0:00:38
BOC91J 222 255 232 231 4.05 0:00:32
SRI90 243 255 243† 243† 0.00 0:00:26
KIN80 353 368 362 353† 0.00 0:00:29
ASK91 118 122 120 120 1.69 0:01:08

VEN90A 305 322 305† 305† 0.00 0:01:27
CHE96A 341 392 364 341† 0.00 0:02:08
CHE96B 278 325 299 278† 0.00 0:01:42

NG96 248 292 290 248† 0.00 0:02:20
VEN90B 126 134 128 126† 0.00 0:02:23
KUM86 364 412 369 364† 0.00 0:05:44
ADI97 497 529 516 497† 0.00 0:10:18

MCC72B 541 596 559 555 2.95 0:10:09

The implemented specifi c heuristic based on the nearest neighbour offers good solutions very 
quickly (in less than one second). Solutions to the problem are signifi cantly improved when the 
specifi c heuristic is used with tabu search, within a reasonable computing time. These results 
have been improved applying a diversifi cation rule to the tabu search procedure.

Therefore, it can be stated that the implementation of the heuristic approach to solve the RMS 
problem drives to obtain satisfactory results within a reasonable computing time, overcoming 
the limitations imposed by the optimal method which was limited to offer results when there 
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was more than 25 products to group. This research has pointed out that meta-heuristic methods 
are useful to tackle diffi cult real problems.
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