4™ nternational Conference on Industrial Engineering and Industrial Management
X1V Congreso de Ingenieria de Organizacion
Donostia- San Sebastian , September 8" -10™ 2010

Using real world distances in logistics management

Kostanca Katragjini®, Rubén Ruiz*, Alejandro Rodriguez?

! Grupo de Sistemas de Optimizacién Aplicada, Instituto Tecnoldgico de Informatica, Universidad Politécnica de
Valencia, Edificio 7A, Camino de Vera S/N, 46021 Valencia, Espafia.kostanca@iti.es, rruiz@eio.upv.es

2 Grupo de Sistemas de Optimizacion Aplicada, Instituto Tecnolégico de Informética, Universidad Politécnica
de Valencia, Pza. Ferrandiz Carbonell, 2 03801 Alcoy, Espafia. arodriguez@doe.upv.es

Abstract

Logistics deals with the planning and control of material flows and related information in organizations, both in
the public and private sectors. Modeling and solving logistic problems often requires a considerable amount of
data and the quality of the gathered data may influence algorithms’ results. In this study we address the issue of
gathering automatically, from geographic information systems (GIS), real world distances between nodes in a
logistic network. We will show how the efficiency is of paramount importance when retrieving large amounts of
logistic data and how our proposed architecture makes possible real data retrieving in reasonable times

Keywords: logistics, VRP, GIS, real travel distances

1. Logistics Management

A logistics system is made up of a set of nodes (facilities) connected by transportation
services and by a transportation network. Nodes are locations where materials are processed,
i.e., manufactured, stored, sold or consumed. Transportation services move materials between
facilities using vehicles and equipment such as trucks, tractors, trailers, crews, pallets,
containers, cars, trains, etc. The design of a logistic system typically deals with the best
configuration, size and location of facilities. It also deals with transportation system design
and optimization such as fixing the mode of transportation to use the best fleet size, schedule
shipments, optimize vehicle routes, etc. (Ghiani, Laporte, Musmanno 2004). Modeling and
solving logistic problems often requires a considerable amount of data and the quality of the
gathered data may influence the quality of the results given by algorithms. Finding, verifying
and tabulating logistic information and data is a difficult and time consuming task and
requires a big effort and accuracy in order to guarantee correct optimization results. In this
study we address the issue of gathering automatically, from geographic information systems
(GIS), real world distances between nodes in a logistic network. We will show how the
efficiency is of paramount importance when retrieving large amounts of logistic data and how
our proposed architecture makes possible real data retrieving in reasonable times. Our final
intention with this research is to stir the research filed in logistic optimization and to move it
away from the well known and common assumption that distances between nodes are
assumed to be Euclidean.

2. Travel distances in common logistic problems

We first briefly describe some of the most well known and studied logistic problems in order
to highlight the fact that transportation distances between nodes need to be known before
solving their mathematical formulation or before applying any other optimization method.

1166

New facility location problems deal with the determination of the optimal new facility
location in a network configuration, so that the total transportation cost is kept to minimum.
In p-centre models the aim is to locate p facilities on a transportation network in such a way
that the maximum travel time from a user to the closest facility is minimized. In location-
covering models the aim is to determine the least-cost set of facilities such that each user can
be reached within a given maximum travel time from the closest facility. Freight traffic
assignment problems (TAPSs) consist of determining a least-cost routing of goods over a
network of transportation services from their origins (e.g. manufacturing plants) to their
destinations (e.g. retail outlets) and are modeled as a minimum cost flow problem. (Complete
descriptions in Ghiani, Laporte and Musmanno, 2004) Vehicle routing problems are central to
distribution management and logistics and typically must be solved routinely by carriers.
They involve finding efficient routes for vehicles along transportation networks, in order to
minimize route length, service cost, travel time, number of vehicles, etc. In practice, several
variants of the problem exist because of the diversity of operating rules and constraints
encountered in real-life applications. (Laporte, 2007)

All these problems are usually modeled on a directed, undirected or mixed graph G(V, A, E)
with V being the set of vertices, representing terminals, plants, warehouses, demand points,
road intersections etc. A and E denote the sets of arcs and edges, respectively and model
transportation links, road connections, material flows, etc. Arc and edges are associated with
transportation costs that typically depend on travel distances between vertices, travel times,
quantity of moved material or any other measure or performance indicator.

3. Using Geographic Information Systems (GIS) for real travel distances data retrieval

The number of nodes (facilities) in a transportation network can exceed several thousands
depending on company dimension and transportation sector. Urban waste collection, food
distribution, parcel shipment and delivery, etc. are examples of applications where the
transportation network can reach tens of thousands of nodes. In order to keep algorithms
computation times and hardware requirements acceptable, several techniques of data
gathering and clustering can be found in literature. With regard to travel distances between
nodes in transportation networks the typical simplification that can be found in literature is the
use of the Euclidian distance metric or the spherical geometry. The Euclidean metric is the
distance between two points in the plane that one would measure with a ruler, and is given by
the Pythagorean formula. The spherical geometry deals with great-circle distances or
orthodromic distances that are shortest distances between any two points on the surface of a
sphere (great circle distance). In general, Euclidean and orthodromic distances are a lower
bound estimation of the real shortest path distances between two locations on Earth. Figure 1
shows the orthodomic distance and a shortest path distance provided by a public GIS,
calculated between two major Spanish cities: Valencia and Barcelona.

167

©Bsamasto
QZaragoza Hexga e ol s = Mapa [sat [Ter b
e X Terrassa N\ litebe % \ Manresa Tor
o k] | = “Fraga s Y Lieida of Loret]
| . — Vilangad arcelona OZaragoza ° o atard & Mar
Saape el Gell A derans . X P
0 Tarragona - _A=C st th Fraga — Barcelona
Alcafiz i ¢ =
= o el
@ _:Cambnls Tarragona lagecans.
Andarra y Alcafiz o
QTortdsa [s
I -] d iﬁ
Abosa el
Teruel 7 Amposta
g f E (5
Castellgn Teruel
de la Rlana

JE o (& Pollenca Castellgh

E|= Qndal, LKEgen I‘ a ghes de la Bléna @

I 5 ncal Neapde ,

S SSaunic Marratrlo o L "\ncaoﬁ:w e Bolienca’ ghleuda
LG Ve Caniag O CManag 3 5 Inca’ “Capdepera
?@w =} Palma o Mauamo o o

E\‘ la GPicassent fagenl é“““?’)ﬁ&. Vals z Calvia0 O ©Manacor,
300 I e Google Paima o £
g o Datos de,mapa €2010 Tele Atlas - Terminos o= Uso ®s Datos de mapa ©2010 Tele Atlas - =1 ¥ dlanitz

Figure 1: Route between Valencia and Barcelona: Left orthodomic distance of 303.365 km., Right shortest path
distance of 349 km.

One could think that orthodromic distances are acceptable. However, we have previously
demonstrated (Rodriguez and Ruiz 2009) that there is a tremendous effect in solution quality
between using real distances and orthodromic approximations.

Real world distances and travel times actually depend on the physical transportation
infrastructure that connects each couple of nodes in a logistic network. Geographic
Information Systems (GIS) can provide real distance information derived from digital road
networks in order to accurately estimate distances between each couple of nodes in a logistic
network. Originally, when GIS data was mostly based on large computers and stored in
internal records, GIS software was basically a stand-alone product. With the increased access
to the Internet, demand for distributed geographic data grew and GIS software gradually
changed its entire outlook to the delivery of data over a network. Public access to geographic
information is nowadays provided by online resources such as Google Earth and Microsoft
Bing, among others. Users can easily include their APIs in custom applications using web
service requests or http requests and the Internet.

3.1. Obtaining large real-world distance matrices with threaded algorithms

With the arrival of web-based GIS it is possible to include in user applications the logic for
calculating real distances between locations (latitude, longitude) and to automatically obtain
large real distance matrixes for all types of logistics optimizations. This logic basically
consists of executing minimum path requests to a web-based GIS. A path request typically
contains the geographical coordinates of from-to locations, the desired type of minimum path
(fastest or shortest) and an indication on the travel method (walking, by car, etc.). Minimum
path calculations are executed in GIS servers and minimum path algorithms, such as
Dijkstra’s method are used. In this study, first we address the problem of optimizing the
process of the automatic collection of shortest paths from a web-based GIS, minimizing GIS
response waiting times. For a transportation network with 1000 nodes, 999,000 paths should
be calculated, one for each couple of nodes (1000x999). Several days could be necessary to
complete the process if the 999,000 path requests are run sequentially. A very effective way
to accelerate the process of obtaining big distance matrixes from GIS remote servers is the
utilization of multithreading techniques in user application logics. With multithreading, the
total GIS response waiting times are minimized because new requests can be started during
the waiting times of already started requests. The idea is to start as many new requests as
possible, each one in a separate thread, during GIS response waiting times, in order to have a
pipeline-like execution process. Let us consider the situation of a pool of similar requests to
run, each one having the same Twaiting Gis Response tiMes. 1 n is the number of requests that can

1168

be started in this time window, total waiting time of the n requests is 2-Twaiting GIS Responses aS
shown in Figure 2:

asuodsay 16 ﬂugg:,ru\l

| asuodsay g5 Bumen, 1

Figure 2: Example of a total response waiting time for n GIS requests started in interval TWaiting GIS Response-

If requests are executed sequentially, total waiting time should be n-Twaiting Gis Response- The
acceleration in the total waiting time is:

Acceleration = n- TWaiting GIS Response -2 'TWaiting GIS Response — (n-2) 'TWaiting GIS Response

The above theoretical result shows that the maximum acceleration that we can give to the
total GIS response waiting times depends only on Twaiting Gis Response @Nd N, number of requests
that can be started in this time window. Note also that in modern multi-core computers,
nothing precludes us from launching more than one initial request to the web-based GIS and
therefore the schema shown in Figure 2 can be replicated a number of times and the
acceleration factor can be increased accordingly.

For big instances with thousands of requests to calculate, the differences in response waiting
times between different web-based GIS that depend on the efficiency of shortest path
algorithms and GIS server optimizations can be dampened by the above mechanism of
accelerations. Our experiments confirmed the existence of an upper bound limit of the
possible acceleration that can be given to the calculation process. In real life distance
calculations, GIS waiting times are variable and depend on request complexity given from the
distances between the two points, origin and destination of the path. The number of requests
that can be started during GIS responses waiting times is variable and the calculation of the
best number of threads to run simultaneously can only be done on a statistical basis.

In order to fix the maximum number of threads to use we executed full distance matrix
calculations for different sizes n of transportation networks where n is the number of nodes
and different number of threads as shown in Figure 3.

169

7000 ==

6000

5000 |
E —4—n=40

4000 —a—n=80

3000 R n=120

Calculation Time (s)

2000 -

F/
h

-g———u—u—aa

1000 1

——¢ —r—e

*
*
*

N © N qu” ngb rb‘b b‘@
Thread Number

Figure 3: Calculation time vs. number of threads when calculating distance matrixes

The experiments were run in a single-core CPU 2.5 GHz virtual machine with 2 GB of RAM
and the code was written in C# 3.0 under the .NET platform 3.5.

The best results correspond to a number of threads equal to 10. For greater number of threads,
calculations times can be worse because of inefficiencies caused by having many threads
running in the same single-core CPU. Recall that all threads compete for the same processor
and context-change and other cache-related inefficiencies quickly degrade computing
resources.

3.2. An effective algorithm for calculating real distances from a web-based GIS

The acceleration of real distance calculation process can be greatly improved if the web-based
GIS minimum path requests are built in an intelligent way. Public GIS like Google Maps and
Microsoft Bing allow for multi-point minimum path requests to be executed. It is possible to
request for a path calculation that passes through a certain number of fixed locations i.e..
going from location A to location B passing by locations C, D, E, etc. GIS return minimum
distances and travel times for each of the ways that compose the whole path, AC, CD,
DE,....EB. Given a node network of n nodes, the shortest path matrix, with all paths between
each couple of nodes, has n-(n-1) elements. Theoretically, n-(n-1) minimum path requests
should be launched to a remote web-based GIS. We have created an algorithm that constructs
a unique multipoint sequence that contains all the n- (n-1) paths as intermediate paths and
does not repeat any path.

All the n nodes are numbered from 1 to n and are increasingly ordered 1, 2, 3,....,n-1, n. The
objective is to establish a criterion for visiting all the n nodes. We first iteratively build a

starting sequence of numbers called S1p, in the following manner.
Step 1: visited node = 1; S1 = {1}

Step 2: Next visited node = 2; S1 = {1, 2}

At each step, we try to include in the sequence already visited nodes in order to obtain the
return ways. The candidate at this step for the next node to visit is node 1. The algorithm
consists in accepting only nodes whose distance from the last visited node is > 2. This

1170

distance is calculated as the difference between node numbers. If a backward node is
accepted, its number and the number of the last visited node are added to the sequence.

Following the example, at this step, 2-1 < 2, so node 1 is not accepted in the sequence and
Step 2 finishes.

Step 3: Next visited node = 3; S1n ={1, 2, 3}
Look for backward elements:

3-1>2 so add to sequence 1 and 3, therefore S1,={1, 2, 3, 1, 3}
3-2 < 2, step 3 finishes.

Step 4: next visited node = 4; S1,={1, 2, 3, 1, 3, 4}

Look for backward elements:
4-1 > 2 so add to sequence node 1 and 4, therefore S1n={1, 2,3,1, 3,4, 1, 4}

4-2 > 2 so add to sequence node 2 and 4, therefore S1n = {1, 2, 3,1, 3,4, 1, 4, 2, 4}, step 4
finishes.

Step n, Next visited node = n; S1,={1,2,3,1,3,4,1,4,2,4,5,1,5,2,5, 3,5,...,n}

Look for backward elements:

n-1>2 so add to sequence node n and 1, therefore S1n,={1,2,3,1,3,4,1,4,2,4,5,1, 5,
2,5,3,5...,n1n}

n-2 > 2 so add to sequence node n and 2, therefore S1,={1,2,3,1,3,4,1,4,2,4,5,1,5, 2,
53,5...,n,1,n, 2 n}

n-(n-2) > 2 so add to sequence node n and node (n-2) therefore final S1p, is
{1,2,3,1,3,4,1,4,2,4,5/1,5,2,5,3,5,...,n,1,n,2,n,..., n-2, n} and step n finishes.

At this point we build a sequence S2p, that contains all the return ways among nodes that have
distance 1 and were not accepted in sequence 1.

S2n=n,n-1,n-2,..., 1
The final sequence Sy, is given by
Sp=SIn\{n} L S2; 1)

Sn=41,2,3,1,3,4,1,4,2,4,5,1,5,2,5,3,5,...,n,1,n,2,n,...,n-2, n,n-1,n-2,....1}

Let us add a new node to the problem, node n+1:

Slh+1 isthen{1,2,3,1,3,4,1,4,2,4,5,1,5,2,5,3,5...n,1,n,2,n,...,n-2,n, n+1, 1, n+1,
2,n+1, 3,ntl,...,n-1 n+1} =Sl u {n+l, 1, n+l, 2, n+], 3, n+l,...,n-1,n+1}

171

S2n+1=n+l,n,n-1,n-2,...... ,1={n+1} U S2

Generalizing:

Slk+1 =S1ku {k+1, 1, k+1, 2, k+1, 3,..., k+1, k-1, k+1} (2)
Observe that the last element is always n+1 and the distance between each node k+1 and the

next node in sequence is 2.(Example: S15=S14u {5,1,5,2,5,3,5} ={1, 2,3, 1, 3,4, 1, 4,
2,4y U {5,1,5, 2,5, 3,5}).

S2k+1 = {k+1} U S2k (3)
Sk+1 = S1k+1 \ {k+1} U S2k+1 as stated in (1), therefore replacing (2) and (3) we have that:

Sk+1 =SLcu {k+1, 1, k+1, 2, k+1, 3, k+1, ..., k-1, k+1}; U S2k 4)
Given n nodes, the sequence can be created in n iterations, iterating k from 1 to n with initial
condition S11 =1and S21=1.

An example with 10 nodes numbered from 1 to 10:

11213]1!31411’412’415’115’215’315’611’612’613’614’617’117’217’317’417’517’811’812’813’814’815’816’81
919.29394,9596,9,,79,10,1,10,2,10,3,10,4,10,5,10,6,10,7,10,8,10,9,8,7,6,5,4,3,2,1.

Moreover, if we have calculated previously all the distances for n nodes and at a certain point
we add to the transportation matrix some o new nodes, (1), (2), (3) and (4) can be used to
calculate the optimized unique sequence that contains only the new ways added to the
problem. For doing this we only need to numerate all nodes whose full distance matrix was
already calculated from 1 to n and the new ones form n+1 to n+a and eliminate from the

sequence S(n-+q) the sequence Sy,

From a web-based GIS point of view, the sequence is interpreted like a multi stop path
request that starts in the first node of the sequence, finishes in the last node of the sequence,
and passes by intermediate nodes in the same order as in the request. Web-based GIS have
practical limits in the maximum number of intermediate stops so it could be necessary to cut
the unique request into a set of smaller requests of maximum k nodes in each request, if k is
the practical limit. In the following example it is shown how to cut the sequence if the
practical limit is of 12 nodes.

Requestl Request2 Request3 Requestd Request5
12313414245/1|1525 35 61 62 6/3 64 67 17 27 3747578182838 4858¢68

Reguestt Reguestd

Reguest? Reguest9
9192939495969?91011021[}31041051061071[}810987654EZZL|

The whole sequence it is decomposed in 9 multi path requests.

All requests contain 12 nodes, which is equivalent to 11 intermediate paths, except for the last
one that contains the remaining 3 nodes (2 intermediate paths). Request 1 is a multi path
request that starts in node 1, finishes in node 1 and passes by the intermediate nodes delimited
by the red rectangle. Request 2 starts in node 1, ends in node 3 and passes by the intermediate

172

nodes delimited by the green rectangle. Observe that it is necessary to start in node 1, the last
of the previous request, and not in node 5, in order to not loose the intermediate path 1-5 of
the original sequence. The same can be said for the other requests. Given a node network of n
nodes, and a practical limit of maximum k nodes in each multi path request, let us calculate
the number N of total requests that will be created by splitting the first unique multipoint
sequence, that contains all the n:(n-1) minimum cost paths. The first N-1 requests contain
each one of the k nodes and (k-1) intermediate minimum cost paths like it is shown in the
following example:

Requestl:k-1paths Request 2: k-1 paths Reguest(N-1): k-1 paths RequestN:& paths

[123 1380 oo v wawafade v o wafobwwn e afafen2 1

Observe that the last request N contains the remaining 6 number of paths where 0 < 6 <k-1.
For 6=0:

B B _n(n-1)
N(k-1)=n(n-1) = N =T 1

For 0< d <k-1:

(N-Dk-D+5=n(n-1)=N = nin _11) +1- k51;0 <& <k -1 therefore: 0 <—k51 <l=

O<1—i:g<l

N = n(n—1)+g:> n(n-1) - n(n—l)Jrg< n(n—l)”:> n(n-1) N < n(n—1)+1
k-1 k-1 k-1 k-1 k-1 k-1

N is an integer number thus: N :[

n(n-1) +1J

In such a way we pass from the initial n(n-—1)simple path GIS requests, to

N = {%4‘]} multi-point minimum path requests. Each of these requests can then be

executed in a separate thread in order to benefit from the multithreading accelerations as
described in the previous sections. The result is a drastic reduction of the duration of the
process of real distance calculations. In our experiments we calculated real distances for
different problem sizes n where n € {40, 80,120,160,..., 1040} as it is shown in Table 1.
Microsoft Bing Route Web Service was used for obtaining real shortest path distances.

For each problem size we measured the calculation times running the n(n—1) requests

n(n-1) . 1J
k-1
requests, for k = 24, run in multithreading (10 threads). Microsoft Bing Route Web Service
exposes an API for developers that permit to easily create and run shortest path request to
Microsoft servers calling a remote web service. In Table 1 are reported the execution times in
hours and in minutes for each problem size and method of distance matrix calculation.

sequentially and in multithreading (10 threads), and the optimized N ={

1ny73

Table 1: Execution times in hours and in minutes for each problem size n and method for distance matrix

calculation.
Calculation Time (h) Calculation Time (min}
th
" pains 1.CPU 1CPU 1.CPU 1CPU 1CRU 1CRU
Segquential 10 threads 10 threads Seguential 10 threads 10 threads
requests of 24 nodes reguests of 24 nodes
40 15880 022 0.09 0.04 13 5 3
a0 §320 0.85 0.35 013 53 el 11
120 14230 214 079 0.40 119 42 24
160 25440 3.82 1.41 0.7 212 85 42
200 35800 587 22 1.1 332 133 66
240 57350 2.60 3.19 1.59 478 181 o5
280 78120 11.72 434 217 651 250 130
320 102080 1.3 5.67 2.84 831 340 170
350 125240 19.39 718 3.59 1077 43 215
400 159500 23.94 3.87 443 1330 532 286
440 193180 2887 1073 537 1610 644 322
420 228520 3449 1277 6.39 18156 766 383
520 259880 40.48 14.99 7.50 2249 S00 450
550 313040 45.96 17.38 870 2509 1043 522
500 355400 53.91 19.97 5953 2995 1188 599
540 408580 51.34 2272 11.38 3408 1363 582
630 451720 69.25 2565 12.83 3543 1539 770
720 517580 77.63 28.76 14.38 4314 1728 863
780 575840 86.53 32.05 18.02 4307 1923 961
200 535200 9588 35.51 17.76 5327 2131 1065
240 T04750 105.71 39.15 19.58 5873 2345 1175
880 773520 116.03 42.97 21.45 G446 2578 1289
820 243480 126.82 45.97 2348 7045 2818 1409
980 520540 138.10 5115 2557 7872 3069 1534
1000 5595000 145.85 55.50 2778 8325 3330 1865
1040 1080560 152.08 60.03 30.02 5005 3502 1801
The following figure shows the results depicted in a chart.
192
168 »
144
— 7
< 120 1 d
g | # —— 1 CFU
= 1 / Secuential
[Fad
kel] bd
= J
& 72 ,/ —=— 1CPU
= 4
3] r4 m 10 threads
© od il
48 g -
O o I
] oed Sl
1 v 5 e 1CPU
o - L
24 ¥ [10 threads
1 el -
L M requests of
1 ey
0 -;yﬁf‘qﬂiﬁ;. A 24 nodes

O NV OB 0O O O O O N H OO D
n

Figure 4: Calculation time vs. size of the transportation matrix n and method for calculating the distance
matrixes.

174

For large problem instances like n=1000 nodes execution time passes from 6 days and 6 hours
approximately to 1 day and 4 hours.

In the following figure, time savings in hours obtained with multithreading and
multithreading plus multipoint requests are depicted in a chart.

120 ‘;-.....
— i l)
< % T
0] ol —=—1CPU
g) 1 ,‘ ‘{/ 10threads
= 72 "’-' /r' reguests of 24 nodes
© i
—— 1 CPU
@ T l‘ // 10threads
48 e
1 .l"/
| '.”
24 '5
i Pl
0 —I-I-'ﬁ!'**.’

OO B OO O O O D HH OO D
n

Figure 5: Calculation time vs. size of the transportation matrix n and method for calculating the distance
matrixes. Multi-threading with and without multipoint requests.

Time savings show to be 63% when multithreading technique is used to calculate full distance
matrix and 80% when the multithreading technique is combined with optimized multi point
requests.

4. Conclusions

Calculating real distances instead of orthodromic simplifications is a must when dealing with
complex logistic management problems. Nowadays, it is perfectly possible to do so by using
publicly available web-based GIS systems capable of calculating real distances between
nodes in a transportation network efficiently. However, in real logistic problems, with
possibly thousands of nodes, the matrixes containing real distances (and/or times) between
nodes are challenging to calculate. Actually, the time needed to obtain such matrixes can
easily be orders of magnitude bigger than the time needed for solving complex logistic
management problems with elaborated metaheuristics. For some reason, the scientific
literature has neglected this important fact. In this work we have shown two techniques,
namely, threading retrieval and intelligent request construction, that, when combined, allow
for drastic improvements in the times needed to calculate such matrixes.

5. Future work

Currently, we are extending our algorithms and implementations to parallel execution in
modern CPUs with more than one single core. We started this research work with a single-
core CPU in order to create a solid base for further optimization. We expect to further reduce
distance matrix execution times, as many times as the number of cores present in the machine.

1175

Acknowledgements

This work is partially funded by the Spanish Ministry of Science and Innovation, under the
project “SMPA - Advanced Parallel Multiobjective Sequencing: Practical and Theoretical
Advances” with reference DP12008-03511/DPI. The authors should also thank the IMPIVA -
Institute for the Small and Medium Valencian Enterprise, for the project OSC with reference
IMIDIC/2009/198 and the Polytechnic University of Valencia, for the project PPAR with
reference 3147.

References

Ghiani, G.; Laporte, G.; Musmanno, R. (2004). Introduction to logistic systems planning and
control. John Wiley & Sons.

Laporte, G. (2007). What you should know about the vehicle routing problem, Naval
Research Logistics, Vol 54, pp. 811-819.

Rodriguez, A.; Ruiz, R. (2009). El impacto de la asimetria en la resolucion de problemas de
distribucién y rutas. In Spanish. 3rd International Conference on Industrial Engineering and
Management. XIIl Congreso de Ingenieria de Organizacion. Barcelona-Terrassa, 2009, pp.
1645-1654

176

