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Abstract 

The response time variability problem (RTVP) is a scheduling problem that arises whenever products, clients or 

jobs need to be sequenced in such a way that the variability in the time between the instants at which they 

receive the necessary resources is minimised. The RTVP is an NP-hard problem and heuristic and metaheuristic 

techniques are needed to solve non-small instances. The best results for the RTVP were obtained with a variable 

neighbourhood search algorithm and a tabu search algorithm. We propose a simulated annealing-based 

algorithm to solve the RTVP. A computational experiment shows that, on average, the proposed algorithm 

improves the best procedures published in the literature. 
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1. Introduction 

The concept of a fair sequence has emerged independently from scheduling problems of 

diverse environments. The common aim of these scheduling problems, as defined in Kubiak 

(2004), is to build a fair sequence using n symbols, where symbol i (i = 1,...,n) must occur di 

times in the sequence. The fair sequence is the one which allocates a fair share of positions to 

each symbol s in any subsequence. This fair or ideal share of positions allocated to symbol i 

in a subsequence of length k is proportional to the relative importance (di) of symbol i with 

respect to the total copies of competing symbols (equal to 
1.. ii n

d ). There is no universal 

definition of fairness because several reasonable metrics can be defined according to the 

specific problem considered. 

Several fair sequencing problems have emerged, among them the Response Time Variability 

Problem (RTVP). This problem has been reported for the first time by Waldspurger and 

Weihl (1994) but formalised several years later by Corominas et al. (2007). In the RTVP, the 

fair sequence is the one which minimises the sum of the variability in the distances between 

any two consecutive copies of the same symbol. In other words, the distance between any two 

consecutive copies of the same symbol should be as regular as possible (i.e., ideally constant). 
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In practice, the RTVP arises whenever products, clients or jobs need to be sequenced so as to 

minimise the variability in the time between the instants at which they receive the necessary 

resources (Corominas et al., 2007). This problem has a broad range of real-world applications. 

These include, for instance, the sequencing of mixed-model assembly lines under JIT 

(Kubiak, 1993; Miltenburg, 1989), the resource allocation in computer multi-threaded 

systems such as operating systems, network servers and media-based applications (Dong et 

al., 1998; Waldspurger and Weihl, 1994, 1995), the periodic machine maintenance problem 

when the times between consecutive services of the same machine are equal (Anily et al., 

1998; Wei and Liu, 1983), the collection of waste (Herrmann, 2007, 2009), the schedule of 

commercial videotapes for television (Bollapragada et al., 2004; Brusco, 2008) and the design 

of sales catalogues (Bollapragada et al., 2004). 

Corominas et al. (2007) showed that the RTVP is NP-hard. The problem can be formulated as 

a mixed integer linear programming as shown by Corominas et al. (2007, 2010). The best 

MILP model (Corominas et al., 2010) is able to generate optimal solutions in a reasonable 

time for small instances up to 40 units. For larger instances, several heuristic and 

metaheuristic algorithms have been proposed for their solution. Waldspurger and Weihl 

(1994) propose an algorithm that generates a solution randomly. The same authors 

(Waldspurger and Weihl, 1995) improve their previous results using the Jefferson method of 

apportionment (Balinski and Young, 1982), a greedy heuristic algorithm which they renamed 

as the stride scheduling technique. Herrmann (2007) solve the RTVP by applying a heuristic 

algorithm based on the stride scheduling technique and an aggregation method is proposed in 

Herrmann (2009). Corominas et al. (2007) proposed five constructive type heuristic 

algorithms including the Jefferson‘s method. Metaheuristics for the RTVP were proposed in 

Corominas et al. (2008, 2009a, 2009b) and in García-Villoria and Pastor (2009a, 2009b, 

2010a, 2010b). These include multi-start and greedy randomized adaptive search procedure 

(GRASP), variable neighbourhood search (VNS), tabu search (TS), particle swarm 

optimisation (PSO), electromagnetism-like mechanism (EM), psychoclonal algorithm abd 

genetic algorithm (GA), respectively. 

To the best of our knowledge, any simulated annealing (SA) approach has been proposed to 

solve the RTVP. In this study we propose a straightforward application of the SA 

metaheuristic for solving the RTVP. A computational experiment shows that a simple SA-

based algorithm is able to improve, on average, the best results published in the literature. 

The remainder of the paper is organized as follows. First, Section 2 presents a formal 

definition of the RTVP. The next section proposes a SA-based algorithm to improve the 

solution of the RTVP. The results of our computational experiment are shown and discussed 

in Section 4. Finally, some conclusions are suggestions for future research are provided in 

Section 5 

2. The Response Time Variability Problem 

The formulation of the RTVP is as follows. Let n be the number of symbols, id  the number 

of copies to be scheduled of symbol i (i = 1,…,n) and D the total number of copies 

(
1.. ii n

D d ). Let s be a solution of a RTVP instance that consists of a circular sequence of 

copies with D positions ( 1 2 Ds s s sK ), where sj is the copy sequenced in position j of 

sequence s. For all symbol i such that 2id , let i

kt  be the distance between the positions in 

which the copies k + 1 and k of symbol i are found (i.e. the number of positions between 

them, where the distance between two consecutive positions is considered equal to 1). Since 
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the sequence is circular, position 1 comes immediately after position D; therefore, 
i

d i
t  is the 

distance between the first copy of product i in a cycle and the last copy of the same symbol in 

the preceding cycle. Let it  be the average or ideal distance between two consecutive copies of 

symbol i (
i

i d
Dt ). Note that for all symbol i in which 1id , 

it1  is equal to it . The 

objective is to minimise the metric Response Time Variability (RTV) which is defined by the 

following expression: 

2

1 1

( )
idn

i

k i

i k

RTV t t  
(1) 

For an illustration, consider the following example. Let 3n  with symbols A, B and C. Also 

consider 3Ad , 2Bd  and 2Cd ; thus, 7D , 7
3At , 7

2Bt  and 7
2Ct . Any 

sequence such that contains symbol i i  exactly id  times is a feasible solution. For 

instance, the sequence (A, B, A, C, B, C, A) is a feasible solution, which has an RTV value 

equal to 
2 2 2 2 2 2 2

7 7 7 7 7 7 7 292 4 1 3 4 2 5
3 3 3 2 2 2 2 3

. 

3. A simulated annealing algorithm for the RTVP 

The simulated annealing metaheuristic (SA) was proposed by Kirkpatrick et al. (1983) to 

solve complex combinatorial optimisation problems, as the RTVP is. Since then, SA has been 

successfully applied for solving a wide range of combinatorial optimisation problems 

(Henderson et al., 2003). 

SA can be seen as a variant of a local search procedure in which is allowed moving to a worse 

solution with small probability. The objective of accepting worse solutions is to avoid being 

trapped into a local optimum. The metaheuristic starts from an initial solution, which is 

initially the current solution. Then, at each iteration, a new solution from the neighbourhood 

of the current solution is considered. If the neighbour is not worse than the current solution, 

then the neighbour becomes the current solution; in the case that is worse, the neighbour can 

become also the current solution with a probability that depends on: 1) how worse is the 

neighbour, and 2) the value of a parameter called temperature, which is decreased every 

certain number of iterations. The general pseudo-code of SA (when minimising the objective 

function) is shown in Figure 1. 

Several decisions have to be taken before applying the general scheme of SA to solve the 

RTVP. Some of these decisions are general and the others are specific for the problem to 

solve. Specific decisions for the RTVP are the representation of solutions and the 

neighbourhood of each solution (N(s)), the generation of the initial solution and the objective 

function (f(s)) (explained in Sections 3.1, 3.2 and 3.3, respectively). General decisions are the 

way to decrease the temperature (А(t)) and the stopping criterion of the algorithm (explained 

in Sections 3.4 and 3.5, respectively). Moreover, the parameters of the algorithm need to be 

fine-tuned before the execution (explained in Section 3.6). 
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Let f(s) be the objective function of the solution s to be minimised  
Let N(s) the neighbourhood of solution s 
Let А(t) the new temperature calculated from the temperature t 
0.  Set the parameters: 
 t0 (initial temperature) 
 itt (number of iterations between two consecutive changes of temperature) 
1.  t := t0; 
2.  s := Generate the initial solution 
3.  While stopping criterion is not reached do: 
4. i :=0 
5. While i < itt do: 
6.  s‘ := choose at random a solution from N(s) 
7.  Δ := f(s‘) – f(s) 
8.  If Δ ≤ 0 Then s := s‘ 
9.  If Δ > 0 Then s := s‘ with probability exp(-Δ/t) 
10.  i := i + 1 
11. End while 
12. t := А(t) 
13.  End while 
14.  Return the best solution found 

Figure 1. Pseudo-code of SA 

3.1. Representation and neighbourhood of solutions 

The representation of a solution is the sequence of copies of the symbols, in which each 

symbol i appears di times. The neighbourhood of a solution is generated interchanging each 

pair of two consecutive copies of the sequence that represents the solution. This 

neighbourhood has been successfully applied when solving the RTVP with a multi-start and 

GRASP algorithm (Corominas et al., 2008) and a VNS algorithm (Corominas et al., 2009a). 

3.2. Initial solution 

The initial solution is generated using the lottery scheduling (Waldspurger and Weihl, 1994) 

as it is done in previous works published in the literature when an initial solution is required. 

That is, for each position, a symbol to be sequenced is randomly chosen. The probability of 

each symbol is equal to the number of copies of this symbol that remain to be sequenced 

divided by the total number of copies that remain to be sequenced. The random generation of 

the initial solution for a SA algorithm is usually done in the literature (Dowsland and Adenso-

Díaz, 2003). 

3.3. Objective function 

In the case of the RTVP, the objective function to be minimised is the RTV value of the 

solution (Equation 1). 

3.4. Decreasing the temperature 

The temperature of the SA algorithm influences on the probability of acceptance of worse 

neighbouring solutions. The higher the temperature, the more probable (Step 9 in Figure 1). 

The most popular way in the literature that obtains good results is the geometric reduction, 

that is, А(t) = t.α, where α < 1 (Dowsland and Adenso-Díaz, 2003; Henderson et al., 2003). 

The α value has to be set; thus, α becomes another parameter of the algorithm. 
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3.5. Stopping criterion 

The algorithm stops when it has run for a preset available time (it is the same criterion that 

has been usually used in previous proposed metaheuristic algorithms for the RTVP). 

3.6. Fine-tuning the algorithm parameters 

Fine-tuning the parameters of a metaheuristic algorithm is almost always a difficult task. 

Although the parameter values may have a very strong effect on the results of the 

metaheuristic for each problem, they are often selected using one of the following methods, 

which are not sufficiently thorough (Eiben et al., 1999; Adenso-Díaz and Laguna, 2006): 1) 

―by hand‖, based on a small number of experiments that are not referenced; 2) using the 

general values recommended for a wide range of problems; 3) using the values reported to be 

effective in other similar problems; or 4) with no apparent explanation. 

Adenso-Díaz and Laguna (2006) proposed a new technique called CALIBRA for fine-tuning 

the parameters of algorithms. CALIBRA is based on using conjointly Taguchi‘s fractional 

factorial experimental designs and a local search procedure. We propose to use CALIBRA for 

setting the parameter values of the proposed algorithm. A training set of 60 instances, which 

were generated as explained in Section 4, is used. The following parameter values were 

obtained: t0 = 13, itt = 1,762 and α = 0.9875. 

4. Computational experiment 

The two best methods to solve the RTVP are the variable neighbourhood search (VNS) 

algorithm proposed in Corominas et al. (2009a) and the tabu search algorithm proposed in 

Corominas et al. (2009b). The TS algorithm is slightly better for solving small and medium 

RTVP instances whereas the VNS algorithm is clearly the best for solving the largest 

instances. Therefore, we compare the performance of our proposed SA algorithms with them. 

All algorithms are coded in Java and executed on a 3.4 GHz Pentium IV with 1.5 GB of 

RAM. The same 60 training instances and 740 test instances used in Corominas et al. (2009a, 

2009b) are also used in this paper (all instances can be found at 

https://www.ioc.upc.edu/EOLI/research/). These instances were grouped into four classes 

(from CAT1 to CAT4 with 15 training instances and 185 test instances in each class) 

according to their size. The instances were generated using the random values of D (total 

number of copies) and n (number of symbols) shown in Table 1. For all instances and for each 

symbol i = 1,…,n, a random value of di is between 1 and 1 2.5D n  such that 

1.. ii n
d D . 

Table 1. Uniform distribution for generating the D and n values 

 CAT1 CAT2 CAT3 CAT4 

D U(25, 50) U(50, 100) U(100, 200) U(200, 500) 

n U(3, 15) U(3, 30) U(3, 65) U(3, 150) 

The algorithms were run for 10, 50 and 1,000 seconds for each instance. Table 2 shows the 

overall average RTV values for the 740 test instances and for each class of instances (CAT1 to 

CAT4) obtained with the three algorithms, respectively. 
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Table 2. Average RTV values for the SA, VNS and TS algorithms 

  Global CAT1 CAT2 CAT3 CAT4 

10 s. 

SA 108.46 10.26 21.67 45.68 356.24 

VNS 68.60 10.73 23.72 52.87 187.07 

TS 339.59 10.42 25.32 128.29 1,194.31 

50 s. 

SA 50.87 10.26 21.67 44.57 126.98 

VNS 63.96 10.73 23.96 51.80 169.64 

TS 210.47 10.26 22.56 73.26 735.78 

1,000 s. 

SA 50.75 10.26 21.67 44.55 126.54 

VNS 62.24 10.73 23.29 51.40 163.15 

TS 78.62 10.24 21.16 48.12 234.96 

After 1,000 computing seconds, the best overall RTV average is obtained with SA, which is 

18.46% and 35.45% better than the RTV average obtained with VNS and TS, respectively. 

Observing the results by class, we can see that TS is still slightly better than SA for solving 

the small instances: 0.19% and 2.35% better averages for CAT1 and CAT2 instances, 

respectively, although for CAT1 instances no significant differences (with a confidence level 

of 95%) are observed. On the other hand, SA outperforms TS and VNS when solving the 

medium and large instances. Specifically, the SA average for CAT3 instances is 13.33% and 

7.42% better than the VNS and TS averages, respectively, and 22.44 and 46.14% better for 

CAT4 instances, respectively. 

                 
Figure 2. Average RTV values over the computing time 

Table 2 also shows that the proposed SA algorithm converges very quickly and the results 

obtained after 50 computing seconds are very similar to the ones obtained after 1,000 

computing seconds. Figure 2 shows the evolution of the average RTV values for the global of 

all instances during the computing time.  

Table 3 shows the number of times that each algorithm reaches the best RTV value obtained 

by either one after 1,000 computing seconds. The results are shown for the total number of 

740 instances and for each class. For the smallest (CAT1) instances, TS finds always the best 
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solution, although SA is able to find the best solution for 98.38% of instances. For the CAT2 

instances, TS clearly finds the best solution more times (for the 98.38% of instances) followed 

by SA, which finds the best solution for 75.67% of CAT2 instances. For the medium and large 

instances, the SA algorithm is clearly the one that most times finds the best solution (72.43% 

and 93.51% of times for the CAT3 and CAT4 instances, respectively). 

Table 3. Number of times that the best solution is reached 

 Global CAT1 CAT2 CAT3 CAT4 

SA 629 182 140 134 173 

VNS 311 153 87 47 24 

TS 457 185 182 82 8 

To complete the analysis of the results, we examined the deviation of the results from the best 

solution obtained by either algorithm. A measure of the deviation (let it be called σ) of the 

RTV values obtained by each algorithm alg = {SA, VNS, TS} was defined for a given 

instance, ins, according to the following expression: 

2
( ) ( )

( )

RTV RTV
( , )

RTV

alg best

ins ins

best

ins

alg ins
 

(2) 

where ( )RTV alg

ins
 is the RTV value of the solution obtained with the algorithm alg for the 

instance ins, and )(RTV best

ins
 is the best RTV value of the solutions obtained with the four 

algorithms for the instance ins. Table 4 shows the maximum σ deviation for the total number 

of instances and for each class. We can see that low deviations are always obtained with the 

SA algorithm for any instance. That is, when the algorithm does not obtain the best RTV 

value for a given instance, it obtains a value that is very close to it. 

Table 4. Maximum σ values with respect to the best solution found 

 Global CAT1 CAT2 CAT3 CAT4 

SA 0.10 0.09 0.10 0.05 0.07 

VNS 2.69 2.25 1.76 0.96 2.69 

TS 36.65 0 0.11 2.00 36.65 

5. Future lines of research 

In this paper, the response time variability problem (RTVP) is solved. This scheduling 

problem arises in a variety of real-world environments including mixed-model assembly lines, 

multi-threaded systems, periodic machine maintenance and waste collection, among others. 

The aim of the RTVP is to minimise the variability in the distances between any two 

consecutive copies of the same symbol. 

The RTVP is an NP-hard problem and heuristic and metaheuristic methods are needed to 

solve real-world, non-small instances. Several metaheuristic algorithms have been developed 

for solving this hard combinatorial optimisation problem. The most efficient algorithms to 

date for solving the RTVP were a VNS-based algorithm (Corominas et al., 2009a) and a TS-

based algorithm (Corominas et al., 2009b).  

In this study we propose a straightforward application of SA to solve the RTVP. The results 

of the computational experiment show that, on average, our algorithm outperforms the 

existing non-exact procedures in the literature to solve non small instances. Moreover, the 
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proposed algorithm is very robust; that is, all solutions obtained improve the best known or 

are very close to them. 

In our SA algorithm, the neighbourhood of a solution is generated by swapping each pair of 

consecutive copies of the sequence that represents the solution. Better performances may be 

obtained by using other neighbourhood structures. Other candidates of neighbourhoods for a 

future research are, for example, the following ones: 1) by swapping each pair of consecutive 

or non consecutive copies of the sequence, and 2) by insertion. 

The SA may arrive to a different local optimum according to the initial solution that is 

generated. Another promising line of future research is to hybridize the SA metaheuristic 

under a multi-start scheme. 
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