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Abstract 

Local search methods are sensitive to the way initial solutions are generated. In this communication the 

differences in terms of quality of solutions and execution time due to the method used to generate starting 

solutions are shown. Guided initial solutions usually lead to higher quality final solutions but the algorithm can 

converge quickly to poor quality local optima. Using randomly generated starting solutions could supply more 

diversified solutions at a cost of a greater computation time. In this communication, both methods are compared 

when applied in a parallel algorithm to the permutation flow shop problem. 

Keywords: parallel algorithms, local search 

1. Introduction 

Complete Local search with Memory or CLM, Ghosh and Sierksma (2002), is a local search 

based metaheuristic that takes advantage of its configuration parameters resembling the 

behaviour of other metaheuristics like tabu search and simulated annealing. We have 

implemented two parallel metaheuristics based in this method, Leon et al. (2006), obtaining 

good results in terms of efficiency in its application to the permutation flow shop problem. In 

this communication, as a complement to that communication we study the differences in 

terms of quality of solutions and execution time due to the method used to generate starting 

solutions. We will compare the effect of start from randomly generated solutions and from 

solutions generated using a constructive heuristic. Guided initial solutions usually lead to 

higher quality final solutions but the algorithm can converge quickly to poor quality local 

optima. Using randomly generated starting solutions could supply more diversified solutions 

at a cost of a greater computation time. We will study the differences when both methods are 

applied in a parallel algorithm to a NP-Hard combinatorial optimization problem like the 

permutation flow shop problem . In this problem, a number of jobs are processed on a number 

of machines. The flow shop permutation schema forces each job to be processed through all 

the machines in exactly the same order and this order must be the same on each machine. 

Each of the machines can process only one job simultaneously and each job may be processed 

only in one machine simultaneously. The objective function in this problem is to minimize the 

maximal completion time of all of the jobs or makespan. 

                                                 
* This work stems from the participation of the authors in a research project funded by the Spanish Ministry of 

Science and Innovation, grant DPI2007-61345, title SAGIP ―Advanced Systems for Integrated Order 

Management‖, and by the Andalusian Government, grant P08-TEP-3630, title SCOPE ―Cooperative Systems for 

Order Programming and Fulfilment‖ 
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2. Parallel Local Search  with Memory 

Local search parallel algorithms have a good balance between simplicity and effectiveness, so 

they are well suited to obtain good quality solutions to NP-Hard problems like the one we are 

studying in a reasonable amount of time. There are algorithms that find good quality solutions 

by using very complex methods or combining several heuristics, like Zobolas et al. (2008) but 

the effort to implement them are hard compared to simpler ones. 

Parallel algorithms can reduce computing time and increase the quality of solutions by 

sharing the computational effort between two or more processors and taking advantage of the 

communication between processes to increase the quality of solutions. There are several 

parallel algorithms applied to the permutation flow shop problem that have been successful in 

this task. In Okamoto et al. (1994) and Okamoto et al. (1995) exact methods are implemented 

in parallel. Simulated annealing is parallelized in Wodecki and Bożejko (2002) and in 

Bożejko and Wodecki (2004a). Tabu Search is used in Wodecki and Bożejko (2002) and in 

Bożejko and Wodecki (2004b). Genetic algorithms are used in Kohlmorgen et al. (1999) and 

Scatter Search in Bożejko and Wodecki (2008a), Bożejko and Wodecki (2008b) and Bożejko 

(2009). 

2.1. Description of parallel algorithm 

The studied algorithm follows a master/worker architecture as proposed by Talbi et al. (1998) 

amongst others. In this schema, one of the processes, the master, controls the search and the 

others, the workers, make the work of exploring the neighbourhood of the solution provided 

by the master. The parallel communication schema is a coarse grained one because the time 

spent searching the neighbourhood is much greater than the time spent by the communication 

between processes, as it is implemented in a cluster of workstations without shared memory. 

As another point of comparison the experiments have been run in a workstation with a 

multicore CPU (an Intel Quad Core one) to see differences between computer platforms. We 

have observed in Leon et al. (2006) the best values of efficiency of the parallel algorithm 

when using 3 or 4 processors, so it is interesting to study the performance of the algorithm in 

current multicore workstations. 

Master process contains a memory or pool of solutions from where worker processes read and 

write solutions and parameters used in the search. The pool is modelled as a list ordered by 

makespan value, being the first solution in the list the best one in terms of makespan. In this 

list, each element or node contains a pointer to the next one. The nodes stored in master pool 

contain the following information (Table 1): 

Table 1. Information in central pool nodes 

Data Comment 

Process Process where the solution has been found 

Sequence The sequence in a permutation flow shop problem 

Makespan The makespan associated with that solution 

Mobility A parameter related to the quality of the solution 

Memsize Top of memory in the CLM algorithm 

K Number of solutions explored in each CLM iteration 

Iterations Top of iterations in CLM algorithm 

Next_pool Pointer to next node in the list 

This information is used by worker processes in order to intensify or diversify the search. 

Mobility is a concept used in the parallel algorithm developed by Crainic y Gendreau (2002). 

This concept guides the selection of a solution from the list to send it to a worker process. The 

mobility mi increases in one when a new solution is added to the list after this one –has a 
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worse makespan- and keeps its value when added solution is before this one in the list. The 

solution Si which is going to be sent to a worker is chosen from the list with a probability 

P(Si) (1) that depends on its mobility mi the number of solutions in central pool, npool, the 

order of the solution in the list i and, inversely, on the sum of mobility of solutions with worse 

makespan in the list. 

 (1) 

The information sent from master to workers and viceversa follows a similar schema (Table 

2). There can be saved communication weight by sending only the data needed by workers to 

perform the search. 

Table 2. Information communicated between processes 

Data Comment 

Sequence The sequence in a permutation flow shop problem 

Makespan The makespan associated with that solution 

Memsize Top of memory in the CLM algorithm 

K Number of solutions explored in each CLM iteration 

Iterations Top of iterations in CLM algorithm 

The information needed by workers only contains the starting solution and parameters of 

CLM search.  

2.1.2. Starting solutions 

We will compare the performance of this parallel algorithm when the experimenter uses 

randomly generated solutions for each of the processes or guided starting solutions. Guided 

solutions are generated using a constructive heuristic based in the well known one, NEH by 

Nawaz, Enscore and Ham (1983). This heuristic has a good performance in terms of 

computing time and quality of solutions when applied to the permutation flow-shop problem, 

see Ruiz and Maroto (2005) or Rad et al. (2006). 

2.2. Computational experience 

We have carried out at least 30 experiments with each of the problems of well known Taillard 

(1993) benchmark from 20 jobs and 5 machines to 100 jobs and 20 machines in two systems. 

The first one is a network of workstations. The nodes of the cluster are workstations with one 

Intel Pentium IV processor each, running at 3.2 GHz. The operating system is Linux, Debian 

distribution. The parallel algorithm has been implemented using LAM-MPI library for 

message passing, Pacheco (1997). The second platform is a workstation with an Intel Quad 

Core processor running at 2.5 GHz. The operating system is Linux with the Debian based 

distribution Ubuntu. 

The initial values for the parameters of the algorithm are shown in (table 1). These values 

have been selected taking into account the values proposed in the original sequential CLM 

algorithm from Ghosh and Sierksma (2002) and in other parallel local search algorithms, 

mainly the one by Niar and Freville (1996).  
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Table 1. Initial values of the parameters 

Parameter Value Comments 

0 0.1 Initial value of threshold parameter 

 0.1 Threshold parameter 

K 2 Number of solutions which neighborhood is explored in 

each worker iteration 

Pool_max 0.2 Max. size of central pool as a percentage of neighborhood 

size, also used in workers 

Max_glob_it 20 Iterations in master process 

B 5 Number of solutions in each communication message 

In the original sequential CLM algorithm, the solutions found in the neighbourhood of 

another one, are stored only if their quality is near the best one. This difference of qualities is 

computed by a threshold (2). 

 = (1+ )mk
 

(2) 

Being mk the best value of makespan found till that iteration.  is multiplied in each iteration 

by a factor  (3) and so  value decreases in each iteration to intensify the search in the 

neighbourhood of good quality solutions. 

 =  0 / (1+ )
 

(3) 

The results have been analyzed and compared using MS Excel datasheet. First of all are the 

results of ARPD (4). 

 (4) 

Table 3. ARPD results with guided initial solutions in a multicore workstation 

ARPD 

WS guided 
np=2 np=3 np=4 np=5 np=6 Avg 

20x5 1.3538% 1.1432% 0.8724% 0.9627% 0.8424% 1.0349% 

20x10 1.8366% 1.9124% 1.7543% 1.9052% 1.9302% 1.8677% 

20x20 1.6616% 1.6132% 1.5207% 1.6216% 1.5063% 1.5847% 

50x5 0.1986% 0.2013% 0.1900% 0.1683% 0.2044% 0.1925% 

50x10 3.1613% 3.1420% 3.1732% 3.2327% 3.2457% 3.1910% 

50x20 4.0468% 4.1411% 4.0911% 4.1505% 4.2476% 4.1354% 

100x5 0.2272% 0.2336% 0.1936% 0.1803% 0.1985% 0.2066% 

100x10 1.3169% 1.3421% 1.2991% 1.3150% 1.3634% 1.3273% 

100x20 3.6853% 3.9016% 3.9264% 3.9617% 4.1534% 3.9257% 

Avg 1.9431% 1.9589% 1.8912% 1.9442% 1.9658% 1.9406% 

The first results (table 3) are the average ARPD obtained in a workstation using guided initial 

solutions and the second (table 4) are the average ARPD obtained using randomly generated 

starting solutions. All of the results are grouped by the size of the problem (jobs x machines) 

and by the number of processes (np) employed in the parallel algorithm, from 2 to 6 

processes. In the cluster, each process runs in a processor. In the case of the workstation, 

when the number of processes exceeds the number of cores, more than one process must run 

in the same core of the processor. This will decrease the performance of the algorithm, 

increasing the computing time when more than 4 processes are used. 
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Table 4. ARPD results with random initial solutions in a multicore workstation 

ARPD 

WS random 
np=2 np=3 np=4 np=5 np=6 Avg 

20x5 4.1742% 6.4531% 6.7464% 6.2274% 7.5361% 6.2274% 

20x10 6.9566% 7.8909% 8.6623% 9.0719% 10.9512% 8.7066% 

20x20 5.5682% 6.2334% 6.6742% 7.4816% 7.6633% 6.7242% 

50x5 1.6663% 2.6585% 3.3929% 3.9844% 4.0905% 3.1585% 

50x10 6.5498% 9.3432% 10.8130% 11.4835% 12.1235% 10.0626% 

50x20 7.9090% 11.7203% 12.7295% 13.9283% 14.4304% 12.1435% 

100x5 3.5969% 4.0316% 4.4957% 5.0097% 4.8146% 4.3897% 

100x10 4.4277% 7.5766% 8.4953% 9.4098% 9.9477% 7.9714% 

100x20 9.1623% 12.8269% 14.9119% 14.9302% 15.3706% 13.4404% 

Avg 5.5568% 7.6372% 8.5468% 9.0586% 9.6587% 8.0916% 

 

Table 5. ARPD results with guided initial solutions in a cluster of workstations 

ARPD 

Cluster guided 
np=2 np=3 np=4 np=5 np=6 Avg 

20x5 1.4531% 1.4295% 1.3001% 1.4299% 1.2916% 1.3808% 

20x10 2.0420% 2.1399% 1.9581% 2.1437% 1.9990% 2.0565% 

20x20 2.0264% 2.0700% 1.7636% 1.9627% 1.6677% 1.8981% 

50x5 0.2761% 0.3354% 0.2607% 0.2526% 0.2453% 0.2740% 

50x10 3.2509% 3.4289% 3.3048% 3.3828% 3.3834% 3.3501% 

50x20 4.1752% 4.2735% 4.3212% 4.4443% 4.4545% 4.3337% 

100x5 0.2012% 0.2883% 0.2156% 0.2477% 0.2033% 0.2312% 

100x10 1.2408% 1.3427% 1.2614% 1.4167% 1.3838% 1.3291% 

100x20 3.7051% 3.8784% 4.0851% 3.9219% 4.0271% 3.9235% 

Avg 2.0412% 2.1318% 2.0523% 2.1336% 2.0729% 2.0864% 

We have also run the algorithm using random initial solutions in the cluster with only two of 

the problem sizes (table 6) to confirm the differences between the quality of solutions 

obtained by these methods. 

Table 6. ARPD results with random initial solutions in a cluster of workstations 

ARPD 

Cluster random 
np=2 np=3 np=4 np=5 np=6 Avg 

100x10 5.0576% 7.8692% 9.5393% 9.9698% 10.4172% 8.5706% 

100x20 9.4156% 13.2467% 14.7844% 15.4988% 16.0241% 13.7939% 

Avg 7.2366% 10.5579% 12.1619% 12.7343% 13.2206% 11.1823% 

The time in seconds needed to reach the ARPD shown before, using the different 

configurations of computer platform and algorithm is shown in the following tables. In a 

workstation using guided starting solutions (table 7) and random ones (table 8). In a cluster 

using guided starting solutions (table 9) and random ones (table 10). 
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Table 7. Time results with guided initial solutions in a multicore workstation 

Time (s) WS guided np=2 np=3 np=4 np=5 np=6 Avg 

20x5 0.12 0.10 0.08 0.08 0.10 0.10 

20x10 0.19 0.17 0.16 0.16 0.15 0.17 

20x20 0.37 0.30 0.28 0.27 0.24 0.29 

50x5 14.73 8.47 7.23 6.18 6.24 8.57 

50x10 15.79 14.25 11.87 12.08 11.48 13.09 

50x20 42.76 34.79 29.83 25.54 26.28 31.84 

100x5 232.82 143.33 117.44 110.52 118.63 144.55 

100x10 913.77 419.31 364.19 357.12 306.34 472.15 

100x20 2602.64 1441.32 918.24 913.20 933.29 1361.74 

Avg 424.80 229.12 161.04 158.35 155.86 225.83 

 

Table 8. Time results with random initial solutions in a multicore workstation 

Time (s) 

WS random 
np=2 np=3 np=4 np=5 np=6 Avg 

20x5 0.06 0.05 0.07 0.05 0.06 0.06 

20x10 0.12 0.11 0.12 0.12 0.12 0.12 

20x20 0.24 0.21 0.19 0.21 0.21 0.21 

50x5 19.77 10.81 9.05 7.78 7.36 10.96 

50x10 42.80 23.58 18.13 16.05 15.39 23.19 

50x20 89.06 45.87 39.03 31.82 31.07 47.37 

100x5 622.70 295.52 231.92 196.22 208.05 310.88 

100x10 1756.85 860.72 668.97 550.97 543.35 876.18 

100x20 3724.16 1744.63 1245.18 1144.25 1157.02 1803.05 

Avg 695.09 331.28 245.85 216.39 218.07 341.33 

 

Table 9. Time results with guided initial solutions in a cluster of workstations 

Time (s) 

Cluster guided 
np=2 np=3 np=4 np=5 np=6 Avg 

20x5 0.10 0.06 0.05 0.04 0.04 0.06 

20x10 0.16 0.10 0.09 0.07 0.07 0.10 

20x20 0.32 0.21 0.17 0.14 0.14 0.20 

50x5 21.08 9.99 8.11 6.96 5.60 10.35 

50x10 34.21 23.22 17.25 14.18 11.33 20.04 

50x20 78.10 47.27 38.62 31.22 25.42 44.12 

100x5 332.13 243.07 185.31 167.23 134.84 212.52 

100x10 1121.54 880.53 661.34 603.44 415.44 736.46 

100x20 3929.37 2615.31 1623.97 1334.16 1145.69 2129.70 

Avg 613.00 424.42 281.66 239.72 193.17 350.39 

Like in the study of makespan, we present here (table 10) the execution time in seconds for 

the algorithm using random initial solutions running in the cluster with only two of the 

problem sizes to confirm the differences between the execution time needed by these 

methods. 
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Table 10. Time results with random initial solutions in a cluster of workstations 

Time (s) 

Cluster random 
np=2 np=3 np=4 np=5 np=6 Avg 

100x10 2489.37 1307.97 912.71 676.22 555.43 1188.34 

100x20 5634.25 2942.56 1871.53 1556.40 1308.51 2662.65 

Avg 4061.81 2125.27 1392.12 1116.31 931.97 1925.50 

We have also carried out a statistical study to validate the observed differences between 

implementations and platforms. First, we have compared ARPD variances between the 

workstation and the cluster using guided starting solutions. The F-test suggests the variances 

are equal in most of problem sizes and number of processes employed with a confidence level 

of 95%. This is due to the constructive nature of the starting point of this method. In this case, 

the average ARPD is different (table 11) with a confidence level of 95% only in some of the 

greater size problems. 

Table 11. Differences between ARPD when using a workstation and a cluster and guided starting solutions 

Differences np=2 np=3 np=4 np=5 np=6 

20x5 = = = = = 

20x10 = = = = = 

20x20 = = = = = 

50x5 = = = = = 

50x10 = = = = = 

50x20 = = = = = 

100x5 ≠ = = = = 

100x10 ≠ = ≠ = = 

100x20 = ≠ = ≠ ≠ 

The F-test confirmed that the variances of ARPD using different starting methods when the 

algorithms run in the same computer are different with a confidence level of 95%. So we have 

employed a t-test to confirm the differences between the averages of ARPD obtained. With 

this test we can conclude that the quality of solutions obtained by a local search parallel 

algorithm improves, using the same number of iterations, when the starting point of the search 

is guided by a constructive heuristic instead of using a random starting solution. 

The differences between execution time are greater in most of the cases. The time needed 

using guided starting solutions is generally lesser than the one using random starting 

solutions. This difference has been observed using a cluster or an individual computer. The 

only point is that the behavior is the opposite when problem size is smaller than 50 jobs. In 

this case, the time needed to construct the starting solution is greater than the time needed for 

the algorithm to improve it. 

We have also noticed a better performance in terms of execution time of a today‘s 

workstation over the performance of a previous generation cluster of workstations when using 

similar number of processes to run a parallel local search algorithm. The different time is due 

to communication delays. The cluster needs to make use of a gigabit Ethernet connection 

between its nodes while the individual computer only uses its internal bus between memory 

and multicore CPU. The external network inserts latency and less speed than the internal bus. 

The difference is greater when using 4 processes, the number of cores of the workstation. 

With less processes, the communication is also lesser and with more than 4 processes, there 

are more than one running in each of the cores and so the performance of the cluster begins to 

take advantage of its greater number of processors. 
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3. Conclusions 

We have observed differences between the behavior of our parallel algorithm not only due to 

the method used to generate starting solutions but also due to the computer environment. The 

quality of obtained solutions is better using guided initial solutions than using random initial 

solutions, also in parallel algorithms. The time used by the Quad Core workstation is better 

than the obtained using six nodes of a cluster except when the number of processes is greater 

than the number of cores. Even in this case the observed processing times are similar, so 

nowadays the advances in hardware makes it useful to use parallel computing even in 

personal computers. As a future research line we could check if the presented conclusions are 

applicable to other parallel algorithms or to other optimization problems. 
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