

 1748

4
th

 International Conference on Industrial Engineering and Industrial Management

XIV Congreso de Ingeniería de Organización

Donostia- San Sebastián , September 8
th

 -10
th

 2010

Parallel CLM starting solutions comparison
*

Jose Miguel León Blanco
1
, Jose L. Andrade Pineda

1
, Manuel Dios Rubio

1
, Rafael Ruiz-

Usano
1

1 Dpto. de Organización de Empresas. Escuela Técnica Superior de Ingenieros. Universidad de Sevilla. Cº de los

Descubrimientos s/n, 41092 Sevilla. miguel@esi.us.es, jlandrade@esi.us.es, mdios@us.es, usano@us.es

Abstract

Local search methods are sensitive to the way initial solutions are generated. In this communication the

differences in terms of quality of solutions and execution time due to the method used to generate starting

solutions are shown. Guided initial solutions usually lead to higher quality final solutions but the algorithm can

converge quickly to poor quality local optima. Using randomly generated starting solutions could supply more

diversified solutions at a cost of a greater computation time. In this communication, both methods are compared

when applied in a parallel algorithm to the permutation flow shop problem.

Keywords: parallel algorithms, local search

1. Introduction

Complete Local search with Memory or CLM, Ghosh and Sierksma (2002), is a local search

based metaheuristic that takes advantage of its configuration parameters resembling the

behaviour of other metaheuristics like tabu search and simulated annealing. We have

implemented two parallel metaheuristics based in this method, Leon et al. (2006), obtaining

good results in terms of efficiency in its application to the permutation flow shop problem. In

this communication, as a complement to that communication we study the differences in

terms of quality of solutions and execution time due to the method used to generate starting

solutions. We will compare the effect of start from randomly generated solutions and from

solutions generated using a constructive heuristic. Guided initial solutions usually lead to

higher quality final solutions but the algorithm can converge quickly to poor quality local

optima. Using randomly generated starting solutions could supply more diversified solutions

at a cost of a greater computation time. We will study the differences when both methods are

applied in a parallel algorithm to a NP-Hard combinatorial optimization problem like the

permutation flow shop problem . In this problem, a number of jobs are processed on a number

of machines. The flow shop permutation schema forces each job to be processed through all

the machines in exactly the same order and this order must be the same on each machine.

Each of the machines can process only one job simultaneously and each job may be processed

only in one machine simultaneously. The objective function in this problem is to minimize the

maximal completion time of all of the jobs or makespan.

* This work stems from the participation of the authors in a research project funded by the Spanish Ministry of

Science and Innovation, grant DPI2007-61345, title SAGIP ―Advanced Systems for Integrated Order

Management‖, and by the Andalusian Government, grant P08-TEP-3630, title SCOPE ―Cooperative Systems for

Order Programming and Fulfilment‖

 1749

2. Parallel Local Search with Memory

Local search parallel algorithms have a good balance between simplicity and effectiveness, so

they are well suited to obtain good quality solutions to NP-Hard problems like the one we are

studying in a reasonable amount of time. There are algorithms that find good quality solutions

by using very complex methods or combining several heuristics, like Zobolas et al. (2008) but

the effort to implement them are hard compared to simpler ones.

Parallel algorithms can reduce computing time and increase the quality of solutions by

sharing the computational effort between two or more processors and taking advantage of the

communication between processes to increase the quality of solutions. There are several

parallel algorithms applied to the permutation flow shop problem that have been successful in

this task. In Okamoto et al. (1994) and Okamoto et al. (1995) exact methods are implemented

in parallel. Simulated annealing is parallelized in Wodecki and Bożejko (2002) and in

Bożejko and Wodecki (2004a). Tabu Search is used in Wodecki and Bożejko (2002) and in

Bożejko and Wodecki (2004b). Genetic algorithms are used in Kohlmorgen et al. (1999) and

Scatter Search in Bożejko and Wodecki (2008a), Bożejko and Wodecki (2008b) and Bożejko

(2009).

2.1. Description of parallel algorithm

The studied algorithm follows a master/worker architecture as proposed by Talbi et al. (1998)

amongst others. In this schema, one of the processes, the master, controls the search and the

others, the workers, make the work of exploring the neighbourhood of the solution provided

by the master. The parallel communication schema is a coarse grained one because the time

spent searching the neighbourhood is much greater than the time spent by the communication

between processes, as it is implemented in a cluster of workstations without shared memory.

As another point of comparison the experiments have been run in a workstation with a

multicore CPU (an Intel Quad Core one) to see differences between computer platforms. We

have observed in Leon et al. (2006) the best values of efficiency of the parallel algorithm

when using 3 or 4 processors, so it is interesting to study the performance of the algorithm in

current multicore workstations.

Master process contains a memory or pool of solutions from where worker processes read and

write solutions and parameters used in the search. The pool is modelled as a list ordered by

makespan value, being the first solution in the list the best one in terms of makespan. In this

list, each element or node contains a pointer to the next one. The nodes stored in master pool

contain the following information (Table 1):

Table 1. Information in central pool nodes

Data Comment

Process Process where the solution has been found

Sequence The sequence in a permutation flow shop problem

Makespan The makespan associated with that solution

Mobility A parameter related to the quality of the solution

Memsize Top of memory in the CLM algorithm

K Number of solutions explored in each CLM iteration

Iterations Top of iterations in CLM algorithm

Next_pool Pointer to next node in the list

This information is used by worker processes in order to intensify or diversify the search.

Mobility is a concept used in the parallel algorithm developed by Crainic y Gendreau (2002).

This concept guides the selection of a solution from the list to send it to a worker process. The

mobility mi increases in one when a new solution is added to the list after this one –has a

 1750

worse makespan- and keeps its value when added solution is before this one in the list. The

solution Si which is going to be sent to a worker is chosen from the list with a probability

P(Si) (1) that depends on its mobility mi the number of solutions in central pool, npool, the

order of the solution in the list i and, inversely, on the sum of mobility of solutions with worse

makespan in the list.

 (1)

The information sent from master to workers and viceversa follows a similar schema (Table

2). There can be saved communication weight by sending only the data needed by workers to

perform the search.

Table 2. Information communicated between processes

Data Comment

Sequence The sequence in a permutation flow shop problem

Makespan The makespan associated with that solution

Memsize Top of memory in the CLM algorithm

K Number of solutions explored in each CLM iteration

Iterations Top of iterations in CLM algorithm

The information needed by workers only contains the starting solution and parameters of

CLM search.

2.1.2. Starting solutions

We will compare the performance of this parallel algorithm when the experimenter uses

randomly generated solutions for each of the processes or guided starting solutions. Guided

solutions are generated using a constructive heuristic based in the well known one, NEH by

Nawaz, Enscore and Ham (1983). This heuristic has a good performance in terms of

computing time and quality of solutions when applied to the permutation flow-shop problem,

see Ruiz and Maroto (2005) or Rad et al. (2006).

2.2. Computational experience

We have carried out at least 30 experiments with each of the problems of well known Taillard

(1993) benchmark from 20 jobs and 5 machines to 100 jobs and 20 machines in two systems.

The first one is a network of workstations. The nodes of the cluster are workstations with one

Intel Pentium IV processor each, running at 3.2 GHz. The operating system is Linux, Debian

distribution. The parallel algorithm has been implemented using LAM-MPI library for

message passing, Pacheco (1997). The second platform is a workstation with an Intel Quad

Core processor running at 2.5 GHz. The operating system is Linux with the Debian based

distribution Ubuntu.

The initial values for the parameters of the algorithm are shown in (table 1). These values

have been selected taking into account the values proposed in the original sequential CLM

algorithm from Ghosh and Sierksma (2002) and in other parallel local search algorithms,

mainly the one by Niar and Freville (1996).

 1751

Table 1. Initial values of the parameters

Parameter Value Comments

0 0.1 Initial value of threshold parameter

 0.1 Threshold parameter

K 2 Number of solutions which neighborhood is explored in

each worker iteration

Pool_max 0.2 Max. size of central pool as a percentage of neighborhood

size, also used in workers

Max_glob_it 20 Iterations in master process

B 5 Number of solutions in each communication message

In the original sequential CLM algorithm, the solutions found in the neighbourhood of

another one, are stored only if their quality is near the best one. This difference of qualities is

computed by a threshold (2).

 = (1+)mk

(2)

Being mk the best value of makespan found till that iteration. is multiplied in each iteration

by a factor (3) and so value decreases in each iteration to intensify the search in the

neighbourhood of good quality solutions.

 = 0 / (1+)

(3)

The results have been analyzed and compared using MS Excel datasheet. First of all are the

results of ARPD (4).

 (4)

Table 3. ARPD results with guided initial solutions in a multicore workstation

ARPD

WS guided
np=2 np=3 np=4 np=5 np=6 Avg

20x5 1.3538% 1.1432% 0.8724% 0.9627% 0.8424% 1.0349%

20x10 1.8366% 1.9124% 1.7543% 1.9052% 1.9302% 1.8677%

20x20 1.6616% 1.6132% 1.5207% 1.6216% 1.5063% 1.5847%

50x5 0.1986% 0.2013% 0.1900% 0.1683% 0.2044% 0.1925%

50x10 3.1613% 3.1420% 3.1732% 3.2327% 3.2457% 3.1910%

50x20 4.0468% 4.1411% 4.0911% 4.1505% 4.2476% 4.1354%

100x5 0.2272% 0.2336% 0.1936% 0.1803% 0.1985% 0.2066%

100x10 1.3169% 1.3421% 1.2991% 1.3150% 1.3634% 1.3273%

100x20 3.6853% 3.9016% 3.9264% 3.9617% 4.1534% 3.9257%

Avg 1.9431% 1.9589% 1.8912% 1.9442% 1.9658% 1.9406%

The first results (table 3) are the average ARPD obtained in a workstation using guided initial

solutions and the second (table 4) are the average ARPD obtained using randomly generated

starting solutions. All of the results are grouped by the size of the problem (jobs x machines)

and by the number of processes (np) employed in the parallel algorithm, from 2 to 6

processes. In the cluster, each process runs in a processor. In the case of the workstation,

when the number of processes exceeds the number of cores, more than one process must run

in the same core of the processor. This will decrease the performance of the algorithm,

increasing the computing time when more than 4 processes are used.

 1752

Table 4. ARPD results with random initial solutions in a multicore workstation

ARPD

WS random
np=2 np=3 np=4 np=5 np=6 Avg

20x5 4.1742% 6.4531% 6.7464% 6.2274% 7.5361% 6.2274%

20x10 6.9566% 7.8909% 8.6623% 9.0719% 10.9512% 8.7066%

20x20 5.5682% 6.2334% 6.6742% 7.4816% 7.6633% 6.7242%

50x5 1.6663% 2.6585% 3.3929% 3.9844% 4.0905% 3.1585%

50x10 6.5498% 9.3432% 10.8130% 11.4835% 12.1235% 10.0626%

50x20 7.9090% 11.7203% 12.7295% 13.9283% 14.4304% 12.1435%

100x5 3.5969% 4.0316% 4.4957% 5.0097% 4.8146% 4.3897%

100x10 4.4277% 7.5766% 8.4953% 9.4098% 9.9477% 7.9714%

100x20 9.1623% 12.8269% 14.9119% 14.9302% 15.3706% 13.4404%

Avg 5.5568% 7.6372% 8.5468% 9.0586% 9.6587% 8.0916%

Table 5. ARPD results with guided initial solutions in a cluster of workstations

ARPD

Cluster guided
np=2 np=3 np=4 np=5 np=6 Avg

20x5 1.4531% 1.4295% 1.3001% 1.4299% 1.2916% 1.3808%

20x10 2.0420% 2.1399% 1.9581% 2.1437% 1.9990% 2.0565%

20x20 2.0264% 2.0700% 1.7636% 1.9627% 1.6677% 1.8981%

50x5 0.2761% 0.3354% 0.2607% 0.2526% 0.2453% 0.2740%

50x10 3.2509% 3.4289% 3.3048% 3.3828% 3.3834% 3.3501%

50x20 4.1752% 4.2735% 4.3212% 4.4443% 4.4545% 4.3337%

100x5 0.2012% 0.2883% 0.2156% 0.2477% 0.2033% 0.2312%

100x10 1.2408% 1.3427% 1.2614% 1.4167% 1.3838% 1.3291%

100x20 3.7051% 3.8784% 4.0851% 3.9219% 4.0271% 3.9235%

Avg 2.0412% 2.1318% 2.0523% 2.1336% 2.0729% 2.0864%

We have also run the algorithm using random initial solutions in the cluster with only two of

the problem sizes (table 6) to confirm the differences between the quality of solutions

obtained by these methods.

Table 6. ARPD results with random initial solutions in a cluster of workstations

ARPD

Cluster random
np=2 np=3 np=4 np=5 np=6 Avg

100x10 5.0576% 7.8692% 9.5393% 9.9698% 10.4172% 8.5706%

100x20 9.4156% 13.2467% 14.7844% 15.4988% 16.0241% 13.7939%

Avg 7.2366% 10.5579% 12.1619% 12.7343% 13.2206% 11.1823%

The time in seconds needed to reach the ARPD shown before, using the different

configurations of computer platform and algorithm is shown in the following tables. In a

workstation using guided starting solutions (table 7) and random ones (table 8). In a cluster

using guided starting solutions (table 9) and random ones (table 10).

 1753

Table 7. Time results with guided initial solutions in a multicore workstation

Time (s) WS guided np=2 np=3 np=4 np=5 np=6 Avg

20x5 0.12 0.10 0.08 0.08 0.10 0.10

20x10 0.19 0.17 0.16 0.16 0.15 0.17

20x20 0.37 0.30 0.28 0.27 0.24 0.29

50x5 14.73 8.47 7.23 6.18 6.24 8.57

50x10 15.79 14.25 11.87 12.08 11.48 13.09

50x20 42.76 34.79 29.83 25.54 26.28 31.84

100x5 232.82 143.33 117.44 110.52 118.63 144.55

100x10 913.77 419.31 364.19 357.12 306.34 472.15

100x20 2602.64 1441.32 918.24 913.20 933.29 1361.74

Avg 424.80 229.12 161.04 158.35 155.86 225.83

Table 8. Time results with random initial solutions in a multicore workstation

Time (s)

WS random
np=2 np=3 np=4 np=5 np=6 Avg

20x5 0.06 0.05 0.07 0.05 0.06 0.06

20x10 0.12 0.11 0.12 0.12 0.12 0.12

20x20 0.24 0.21 0.19 0.21 0.21 0.21

50x5 19.77 10.81 9.05 7.78 7.36 10.96

50x10 42.80 23.58 18.13 16.05 15.39 23.19

50x20 89.06 45.87 39.03 31.82 31.07 47.37

100x5 622.70 295.52 231.92 196.22 208.05 310.88

100x10 1756.85 860.72 668.97 550.97 543.35 876.18

100x20 3724.16 1744.63 1245.18 1144.25 1157.02 1803.05

Avg 695.09 331.28 245.85 216.39 218.07 341.33

Table 9. Time results with guided initial solutions in a cluster of workstations

Time (s)

Cluster guided
np=2 np=3 np=4 np=5 np=6 Avg

20x5 0.10 0.06 0.05 0.04 0.04 0.06

20x10 0.16 0.10 0.09 0.07 0.07 0.10

20x20 0.32 0.21 0.17 0.14 0.14 0.20

50x5 21.08 9.99 8.11 6.96 5.60 10.35

50x10 34.21 23.22 17.25 14.18 11.33 20.04

50x20 78.10 47.27 38.62 31.22 25.42 44.12

100x5 332.13 243.07 185.31 167.23 134.84 212.52

100x10 1121.54 880.53 661.34 603.44 415.44 736.46

100x20 3929.37 2615.31 1623.97 1334.16 1145.69 2129.70

Avg 613.00 424.42 281.66 239.72 193.17 350.39

Like in the study of makespan, we present here (table 10) the execution time in seconds for

the algorithm using random initial solutions running in the cluster with only two of the

problem sizes to confirm the differences between the execution time needed by these

methods.

 1754

Table 10. Time results with random initial solutions in a cluster of workstations

Time (s)

Cluster random
np=2 np=3 np=4 np=5 np=6 Avg

100x10 2489.37 1307.97 912.71 676.22 555.43 1188.34

100x20 5634.25 2942.56 1871.53 1556.40 1308.51 2662.65

Avg 4061.81 2125.27 1392.12 1116.31 931.97 1925.50

We have also carried out a statistical study to validate the observed differences between

implementations and platforms. First, we have compared ARPD variances between the

workstation and the cluster using guided starting solutions. The F-test suggests the variances

are equal in most of problem sizes and number of processes employed with a confidence level

of 95%. This is due to the constructive nature of the starting point of this method. In this case,

the average ARPD is different (table 11) with a confidence level of 95% only in some of the

greater size problems.

Table 11. Differences between ARPD when using a workstation and a cluster and guided starting solutions

Differences np=2 np=3 np=4 np=5 np=6

20x5 = = = = =

20x10 = = = = =

20x20 = = = = =

50x5 = = = = =

50x10 = = = = =

50x20 = = = = =

100x5 ≠ = = = =

100x10 ≠ = ≠ = =

100x20 = ≠ = ≠ ≠

The F-test confirmed that the variances of ARPD using different starting methods when the

algorithms run in the same computer are different with a confidence level of 95%. So we have

employed a t-test to confirm the differences between the averages of ARPD obtained. With

this test we can conclude that the quality of solutions obtained by a local search parallel

algorithm improves, using the same number of iterations, when the starting point of the search

is guided by a constructive heuristic instead of using a random starting solution.

The differences between execution time are greater in most of the cases. The time needed

using guided starting solutions is generally lesser than the one using random starting

solutions. This difference has been observed using a cluster or an individual computer. The

only point is that the behavior is the opposite when problem size is smaller than 50 jobs. In

this case, the time needed to construct the starting solution is greater than the time needed for

the algorithm to improve it.

We have also noticed a better performance in terms of execution time of a today‘s

workstation over the performance of a previous generation cluster of workstations when using

similar number of processes to run a parallel local search algorithm. The different time is due

to communication delays. The cluster needs to make use of a gigabit Ethernet connection

between its nodes while the individual computer only uses its internal bus between memory

and multicore CPU. The external network inserts latency and less speed than the internal bus.

The difference is greater when using 4 processes, the number of cores of the workstation.

With less processes, the communication is also lesser and with more than 4 processes, there

are more than one running in each of the cores and so the performance of the cluster begins to

take advantage of its greater number of processors.

 1755

3. Conclusions

We have observed differences between the behavior of our parallel algorithm not only due to

the method used to generate starting solutions but also due to the computer environment. The

quality of obtained solutions is better using guided initial solutions than using random initial

solutions, also in parallel algorithms. The time used by the Quad Core workstation is better

than the obtained using six nodes of a cluster except when the number of processes is greater

than the number of cores. Even in this case the observed processing times are similar, so

nowadays the advances in hardware makes it useful to use parallel computing even in

personal computers. As a future research line we could check if the presented conclusions are

applicable to other parallel algorithms or to other optimization problems.

References

Bożejko, W. (2009). Solving the flow shop problem by parallel programming. Journal of

Parallel and Distributed Computing. Vol. 69, pp. 470–481.

Bożejko, W.; Wodecki, M. (2008a). Parallel scatter search algorithm for the flow shop

sequencing problem. PPAM 2007. 7
th

 International Conference on Parallel Processing and

Applied Mathematics. Wyrzykowski, R.; Szymanski et B. Ed., LNCS, Springer. To appear.

Bożejko, W.; Wodecki, M. (2008b). Parallel path-relinking method for the flow shop

scheduling problem. International Conference on Computational Science (ICCS 2008).

LNCS. Springer. To appear.

Bożejko, W.; Wodecki, M. (2004a). The New Concepts in Parallel Simulated Annealing

Method. L. Rutkowski et al., Eds.): ICAISC 2004, LNAI 3070, pp. 853–859.

Bożejko, W.; Wodecki, M. (2004b). Parallel tabu search method approach for very difficult

permutation scheduling problems. Proceedings of International Conference on Parallel

Computing in Electrical Engineering: PARELEC '04, pp. 156–161.

Bożejko, W.; Wodecki, M. (2002). Solving the flow shop problem by parallel tabu search.

Proceedings of International Conference on Parallel Computing in Electrical Engineering,

2002. PARELEC '02, pp. 189–194.

Crainic, T.G.; Gendreau, M. (2002). Cooperative Parallel Tabu Search for Capacitated

Network Design. Journal of Heuristics. Vol. 8, pp. 601–627.

Ghosh, D.; Sierksma, (2002). Complete Local Search with Memory. Journal of Heuristics,

Vol. 8, No. 6, 571-584.

Kohlmorgen, U.; Schmeck, H.; Haase, K. (1999). Experiences with fine-grained parallel

genetic algorithms. Annals of Operations Research. Vol. 90, pp. 203–219.

León Blanco, J.M., Framiñán Torres, J.M., González Rodríguez, P.L., Pérez González, P.,

Ruiz Usano, R. (2006). Influencia de la Granularidad en las Prestaciones de Algoritmos

Paralelos. X Congreso de Ingeniería de Organización. Valencia, pp. 217-218.

Nawaz, M.; Enscore Jr., E.E.; Ham, I. (1983). A Heuristic Algorithm for the m-Machine, n-

Job Flow-Shop Sequencing Problem. Omega. Vol. 11, no. 1, pp. 91–95.

Niar, S.; Freville, A. (1996). A Parallel Tabu Search Algorithm For The 0-1 Multidimensional

Knapsack Problem. Baltzer Journals. ISSN 1063-7133/97.

Okamoto, S.; Watanabe, I.; Iizuka, H. (1995). A new parallel algorithm for the n-Job, m-

machine flow-shop scheduling problem. Systems and Computers in Japan (Wiley Periodicals,

Inc.). Vol. 26, no. 2, pp. 10–21.

 1756

Okamoto, S.; Watanabe, I.; Iizuka, H. (1994). A new optimal algorithm for the permutation

flow-shop problem and its parallel implementation. Computers & Industrial Engineering. Vol.

27, no. 1–4, pp. 39–42.

Pacheco, P.S. (1997). Parallel Programming with MPI. Morgan Kaufmann Publishers, Inc. /

Elsevier.

Rad, S.F., Ruiz, R., Boroojerdian, N. (2009). New High Performing Heuristics for

Minimizing Makespan in Permutation Flowshops. OMEGA, The International Journal of

Management Science. Vol. 37, no. 2, pp. 331–345.

Ruiz,R., Maroto, C. (2005). A comprehensive review and evaluation of permutation flowshop

heuristics. European Journal of Operational Research. Vol. 165, pp. 479–494.

Talbi, E.G., Hafidi, Z., Geib, J.M. (1998). A parallel adaptive tabu search approach. Parallel

Computing. Vol. 24, pp. 2003–2019.

Wodecki, M.; Bozejko, W. (2002). Solving the Flow Shop Problem by Parallel Simulated

Annealing. R. Wyrzykowski et al., Eds.): PPAM 2001, LNCS 2328, pp. 236–244

Zobolas, G.I., Tarantilis, C.D., Ioannou, G. (2008). Minimizing makespan in permutation

flow shop scheduling problems using a hybrid metaheuristic algorithm. Computers and

Operations Research. doi: 10.1016/j.cor.2008.01.007.

