

 1775

4
th

 International Conference on Industrial Engineering and Industrial Management

XIV Congreso de Ingeniería de Organización

Donostia- San Sebastián , September 8
th

 -10
th

 2010

Size-reduction methods for the unrelated parallel machines problem and

makespan criterion

Luis Fanjul-Peyro, Rubén Ruiz

Grupo de Sistemas de Optimización Aplicada, Instituto Tecnológico de Informática (ITI), Ciudad Politécnica de

la Innovación, Edificio 8G, Acceso B, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022,

Valencia, Spain. luifanpe@eio.upv.es, rruiz@eio.upv.es

Abstract

In this work we study the unrelated parallel machines problem with the objective of the minimization of the

maximum completion time or makespan (Cmax). We propose some metaheuristics based on a size-reduction of

the original assignment problem. The idea is to consider only a few of the best possible machine assignments for

the jobs and not all of them. We test the proposed simple algorithms with a large benchmark of instances and

compare them with current state-of-the-art methods. In most cases, the proposed size-reduction algorithms

produce results that are statistically better by a significant margin.

Keywords: unrelated parallel machines, makespan, heuristics, size-reduction.

1. Introduction

In the parallel machines scheduling problem there is a set N of n jobs that have to be

processed on a set M of m parallel disposed machines. Every job must be processed by

exactly one out of the m parallel machines. In the most general case, the parallel machines are

unrelated, i.e., the processing time of job j, j N depends on the machine i, i M to which it

is assigned to. As a result, the input data to the problem are the number of jobs n, the number

of machines m and a processing time matrix pij . The problem consists on the assignment of

jobs to machines and then on the scheduling of all the assigned jobs at each machine. One of

the most commonly studied optimization criteria is the minimization of the maximum

completion time or Cmax. Using the well known α/β/γ classification of Graham et. al. (1979),

this problem is denoted as R//Cmax. This is a NP-Hard problem in the strong sense, since

Garey and Johnson (1979) demonstrated that the simpler identical parallel machines case is

already NP-Hard in the strong sense. Lenstra et. al. (1977) showed that the special case of two

identical machines is also NP-Hard. Notice that with the Cmax objective, the R//Cmax is just a

type of assignment problem since the sequence of the jobs assigned to any machine does not

influence the value of the Cmax. To fully define this problem we have a well known Mixed

Integer Linear Programming (MILP) assignment model, where the variables xij are one if job j

is assigned to machine i and zero otherwise. The model goes as follows:

MiCpxNjxtsC
n

j

ijij

m

i

ij max

11

max ;1..min

Many papers about the R//Cmax problem have been published since the original work of

McNaughton (1959). We can find several reviews like the ones of Cheng and Sin (1990) and

Mokotoff (2001). A more recent and updated review is given by Fanjul-Peyro and Ruiz

(2010) (available at the publications section of http://soa.iti.es) where it was shown that state-

mailto:luifanpe@eio.upv.es
mailto:rruiz@eio.upv.es
http://soa.iti.es/

 1776

of-the-art results can be obtained by a simple iterated greedy metaheuristic method referred to

as NVST-IG+ (denoted here as DIG for simplicity). The same authors also demonstrated that

new versions of commercial solvers, and more specifically, IBM-ILOG CPLEX version 11.1

(denoted here as CPLEX) are extremely competitive in finding optimum solutions just using

the previous MILP model. In this short paper we propose size-reduction methods that take

advantage of modern solvers in order to achieve even better results.

2. Size-reduction algorithms

We observed that CPLEX is very capable of solving some instances of considerable size (up

to 1000 jobs and 50 machines). However, CPLEX needed large CPU times to solve big

instances and large CPU times to prove the optimality of the solutions. A close analysis of the

resulting sequences yielded an expected but rather surprising result: In almost all situations, a

given job was assigned to either the fastest, second fastest or third fastest machine. In other

words, among the n·m binary variables of the previous MILP model, jobs were assigned to the

machines i1, i2 or i3 where i1=argmin j M pij; i2=argmin j M\i1 pij and i3=argmin j M\i1,i2 pij. The

resulting ―reduced‖ MILP model has n·3 binary variables. This means that if a 1000×50

instance needs 50,000 binary variables, by just using the ―three fastest machines‖ for each job

all we need is 3,000 variables, i.e., 16.67 times less variables. In order to test this proposal, we

count how many jobs were not assigned to any of the three fastest machines i1, i2 or i3 in the

instances used by Fanjul-Peyro and Ruiz (2010) which employed a total of 1,400 instances

divided into 7 groups with different distributions of the processing times pij with 200

instances each, ranging from the smallest instances of 100 jobs and 10 machines to instances

of up to 1000 jobs and 50 machines and for the reference solutions obtained with CPLEX

with a 2 hours termination criterion on each instance. Further details about this benchmark

will be given later. Results are given in Table 1. Each cell in Table 1 represents the

percentage of jobs in the instance that were assigned to a machine not in i1, i2 or i3 in the final

mentioned reference solution.

From Table 1 we notice that in the interval where the processing times are randomly

uniformly distributed in the interval [1,100], i.e., U(1,100), only 1% of jobs are, on average,

assigned to machines other than the three fastest. Excluding the last column, no interval

exceeds 6%. The last column shows instances where processing times are machine correlated.

In this case, jobs are not only assigned to fast machines. In machine correlated instances, there

are machines which are faster for all jobs and therefore, in the reference solution not all jobs

are expected to be assigned to the fastest machines as they quickly become overloaded.

Of course, this size reduction comes at a high cost. First of all, optimality cannot be

guaranteed and second, this straightforward size reduction does not perform that well in all

cases. A less naïve approach is needed. We devised several size reduction methods. The first

has been already explained and consists in selecting i1, i2 and i3 for every job. We call this the

3J size-reduction method. We also use a selection within a machine calculating the theoretical

average of jobs that should be assigned to each machine, i.e., a = n/m, and selecting two times

(2·a) the smallest values of pij at each machine. This last method, used together with 3J, is

denoted by 3J2M.

Given the good results obtained with the DIG algorithm in Fanjul-Peyro and Ruiz (2010), a

direct idea is to use the pij values obtained after analyzing all the best solutions obtained by

DIG in a number of iterations. This procedure is used together with 3J to form what we call

the 3JD size-reduction method.

 1777

Table 1. Percentage of jobs at each instance that are not assigned to any of the three fastest machines i1, i2 or i3 in

the reference solutions given by IBM-ILOG CPLEX 11.0 with a time limit of 2 hours.

Once the original problem has been reduced by the usage of 3J, 3J2M, or 3JD, we simply run

CPLEX until the optimum solution is found for the reduced problem. Obviously, it is not

guaranteed that this optimum solution is also optimum for the original problem. Some further

refinements can be implemented. If the solver reaches an optimal solution of a size-reduced

problem before the allotted CPU time has elapsed, we can increase the number of pij to be

considered (more binary xij variables) and re-launch the solver with this increased size-

reduced problem. An algorithm results from this procedure: start by selecting only the two

smallest pij values for each job (i1 and i2) and each time an optimal solution for the size-

reduced model is reached, we select another non previously selected smallest pij for each job

and re-launch the solver. This is repeated until the termination criterion is met. We denote this

algorithm as 2JDi.

Another refinement comes from the fact that the solver, in most cases, uses a lot of time to

close the search tree when proving optimality, without improving the solution. For this

reason, instead of solving each size-reduced model to optimality, we solve each model with a

maximum CPU time limit. When this limit is reached, we re-launch an increased size-reduced

model with the same time limit starting from the previously best known solutions. After some

calibrations, we fix this CPU time limit at 90 seconds and denote this algorithm as 2JDi(90).

Current CPLEX versions run in parallel, using the available multiple cores of modern

computers. We also develop some simple parallel versions of our algorithms. For example,

the previous 2JDi(90) method is ―parallelized‖ by just running the first size-reduced and

smallest problem in one core and the next increased sized-reduced model in the second core.

Whenever a core finishes, the next pending increased size-reduced model is launched. We

denote this algorithm as M-2JDi(90) (Multicore 2JDi(90)). We also generate a simple parallel

version of the DIG algorithm by just running as many threads of the DIG, each one running in

one core, and after the termination criterion is reached, the best solution found in any core is

n m U(1,100) U(10,100) U(100,200) U(100,120) U(1000,1100) Jobcorre Machcorre

100 10 0.3 0.5 0.8 1.3 1.1 0.7 30.2

20 1.4 1.2 4.6 1.5 2.8 4.4 35.4

30 3.8 4.6 18 24.4 31.2 10.9 41.3

40 3.5 7.3 20.4 11.1 24.7 17.9 43.8

50 5.5 10.2 6.6 1.5 4.8 32.4 41.3

200 10 0.2 0.1 0.3 0.3 0.5 0.3 31.9

20 0.4 0.65 1.4 0.55 1.3 2.2 40.3

30 0.8 1.65 6.8 17.75 10.5 4.75 44.05

40 1.2 1.85 1.85 0.6 3.2 9.9 45.75

50 2.15 3.65 4.3 0.25 4.35 12.6 46.15

500 10 0.04 0 0.06 0.1 0.08 0.02 32.82

20 0.08 0.12 0.3 0.2 0.24 0.18 43.14

30 0.32 0.12 2.34 13.46 8.8 0.8 44.48

40 0.52 0.28 4.46 11 10.12 2.1 44.3

50 0.36 0.74 0.84 0.28 0.84 4.2 45.1

1000 10 0.02 0.01 0 0.02 0.02 0 29.66

20 0.04 0.02 0.19 0.13 0.12 0.06 37.65

30 0.05 0.09 0.74 1.78 12.57 0.25 39.84

40 0.13 0.09 0.29 0.16 0.17 0.86 46.67

50 0.2 0.11 0.45 0.1 0.22 1.33 45.14

1.05 1.66 3.74 4.32 5.88 5.29 40.45Average(%)

 1778

retained. Lastly, CPLEX is checked both in single-core and multi-core, denoted as CPLEX

and M-CPLEX respectively.

3. Computational analysis

We use a comprehensive set of benchmark instances for the R//Cmax proposed by Fanjul-Peyro

and Ruiz (2010) that are composed by 7 different intervals for the distribution of the pij

processing times: U(1,100), U(10,100), U(100,200), U(100,120), U(1000,1100), correlated

jobs where pij are determined by pij = bj + dij where bj and dij come from U(1,100) and

U(1,20), respectively and correlated machines with pij = ai + cij where ai and cij are uniformly

distributed as U(1,100) and U(1,20), respectively. For each interval, we have the following

combinations of n and m: n={100,200,500,1000}, m={10,20,30,40,50}. For each combination

there are 10 replicates. There are 200 instances at each interval and 1,400 instances in total.

All tests have been run in a cluster of 12 PC/AT computers with Intel Core 2 Duo E6600

processors, running at 2.4GHz with 2 GB of RAM memory and under Windows XP SP3

operating system. Notice that these computers have two cores. In order to compare the results

of the algorithms we use as reference values those given by Fanjul-Peyro and Ruiz (2010),

which were obtained after solving each instance with the solver IBM-ILOG CPLEX 11.0 with

a 2 hour maximum CPU time limit. The response variable is the relative percentage deviation

from this reference solution as follows:

100
)(

)()(
)(Deviation Percentage Relative

*

max

*

maxmax

iC

iCiC
RPD

Where C
*

max(i) is the aforementioned 2 hour CPLEX solution (many times optimal or with a

very small gap) and Cmax(i) is the value obtained by a given algorithm and instance i. We also

carry out ANOVA tests in order to guarantee that the observed differences in the average

results are indeed statistically significant. The computational analysis is divided between the

serial and parallel methods.

3.1. Serial algorithms' results

Our first test comprises the state-of-the-art algorithm DIG proposed by Fanjul-Peyro and Ruiz

(2010) and the CPLEX version 11.1. We put along the first simple algorithms 3J and 3J2M.

Table 2 shows the average results of the relative percentage deviation of all intervals together

except for correlated machines. Recall that each cell contains the average of 1,400 results.

The different stopping times are given in the rows. We do not include the correlated machines

interval because as it was shown in Table 1 for this interval the 3J strategy was a poor way of

size-reducing the problem. Therefore, these initial results should be seen as a first

approximation.

Table 2. Average Relative Percentage Deviations for all intervals except correlated machines

for existing state-of-the-art and simple size-reduction algorithms 3J and 3J2M.

Time (sec.) CPLEX DIG 3J 3J2M

15 0.59 0.42 0.52 0.48

30 0.41 0.34 0.43 0.37

60 0.26 0.29 0.38 0.32

120 0.15 0.22 0.34 0.28

240 0.09 0.17 0.30 0.24

300 0.07 0.16 0.28 0.22

The first remarkable result is that CPLEX has seen its performance increased in a significant

way since the results Fanjul-Peyro and Ruiz (2010). This is due to the new version 11.1 and

 1779

due to the faster computers used. In Fanjul-Peyro and Ruiz (2010) it was stressed that regular

commercial solvers should not be overlooked since they steadily improve performance and

this is a clear demonstration of this fact. A second remarkable result is that DIG is now

competitive with CPLEX for very short CPU times of up to 30 seconds whereas in Fanjul-

Peyro and Ruiz (2010), DIG was shown to outperform CPLEX up to 60 seconds. The

conclusion is that the new version of CPLEX makes a much more effective use of the faster

computers.

The first two simple proposed size-reduction algorithms are fairly competitive. For longer

CPU times, CPLEX is expectedly better as CPLEX is solving the full problem, but note how

for short CPU times, i.e., 15 and 30 seconds, 3J2M outperforms CPLEX. Now we test in more

detail the more advanced processed methods, whose results are given in Table 3.

The results of Table 3 show that, in average (right-most column), all of our proposed size-

reduction algorithms produce better results than the state-of-art methods for all different

stopping criteria. This table even has negative values because the algorithms, in these cases,

reach better results than the reference values (CPLEX 11.0 with 2 hours stopping time).

However, we can notice that, in the interval U(1,100), CPLEX produces good results for

larger stopping times, improving 3JD and even 2JDi but still not reaching the values obtained

by 2JDi(90). In general, when the stopping time exceeds the calibration value of 2JDi(90),

which is 90 seconds, we notice how the 2JDi(90) algorithm reaches better results than its

simpler counterpart algorithm 2JDi where the solver part is not stopped. The results show that

CPLEX has a poor result in correlated jobs but a good result in correlated machines, which it

is the only case in which it can improve the results of our best algorithm for large CPU times.

We can only say that this cannot be easily attributed due to the unknown structure of the

specific algorithm that CPLEX is using for this assignment problem. In any case, CPLEX

ends up being instance dependent and not robust as our proposed methods.

 1780

Table 3. Average Relative Percentage Deviations for serial algorithms CPLEX, DIG, 3JD, 2JDi and 2JDi(90)

with different CPU time stopping criteria. Bold (italics) figures represent best (worst) results, respectively.

Time Algorithms U(1,100) U(10,100) Jobcorre Machcorre U(100,200) U(100,120) U(1000,1100) Average

15 CPLEX 0.82 0.70 1.33 0.48 0.55 0.09 0.05 0.58

DIG 1.07 0.62 0.45 0.53 0.29 0.04 0.02 0.43

3JD 0.49 0.17 0.24 0.24 0.13 0.01 0.00 0.18

2JDi 0.44 0.17 0.24 0.22 0.13 0.01 0.00 0.17

2JDi(90) 0.44 0.17 0.24 0.22 0.13 0.01 0.00 0.17

30 CPLEX 0.56 0.47 0.93 0.30 0.37 0.06 0.04 0.39

DIG 0.93 0.49 0.35 0.50 0.25 0.04 0.01 0.36

3JD 0.37 0.08 0.13 0.23 0.11 0.01 0.00 0.13

2JDi 0.27 0.07 0.11 0.19 0.10 0.00 0.00 0.11

2JDi(90) 0.27 0.07 0.11 0.19 0.10 0.00 0.00 0.11

60 CPLEX 0.33 0.25 0.65 0.16 0.25 0.04 0.03 0.25

DIG 0.83 0.39 0.25 0.47 0.21 0.03 0.01 0.31

3JD 0.33 0.03 0.00 0.22 0.09 0.01 0.00 0.10

2JDi 0.19 0.01 -0.01 0.17 0.08 0.00 0.00 0.06

2JDi(90) 0.19 0.01 -0.01 0.17 0.08 0.00 0.00 0.06

120 CPLEX 0.17 0.10 0.45 0.09 0.13 0.03 0.02 0.14

DIG 0.75 0.24 0.14 0.42 0.17 0.02 0.00 0.25

3JD 0.31 0.01 -0.09 0.22 0.08 0.00 0.00 0.08

2JDi 0.15 -0.06 -0.11 0.16 0.06 0.00 0.00 0.03

2JDi(90) 0.06 -0.07 -0.10 0.15 0.05 0.00 0.00 0.01

240 CPLEX 0.08 0.05 0.33 0.04 0.06 0.02 0.01 0.09

DIG 0.63 0.17 0.06 0.37 0.14 0.02 0.00 0.20

3JD 0.26 -0.02 -0.13 0.22 0.07 0.00 0.00 0.06

2JDi 0.10 -0.09 -0.16 0.15 0.06 0.00 0.00 0.01

2JDi(90) -0.02 -0.14 -0.15 0.11 0.02 -0.01 -0.01 -0.03

300 CPLEX 0.06 0.02 0.29 0.03 0.04 0.01 0.01 0.07

DIG 0.63 0.14 0.03 0.36 0.13 0.02 0.00 0.19

3JD 0.24 -0.07 -0.17 0.21 0.03 0.00 0.00 0.03

2JDi 0.08 -0.11 -0.19 0.14 0.02 0.00 0.00 -0.01

2JDi(90) -0.03 -0.14 -0.17 0.10 0.00 -0.01 -0.01 -0.04

So far we have just shown average results. We need to carry out an ANOVA statistical test in

order to guarantee that the observed differences in the average results are indeed statistically

significant. Figure 1 represents a means plot of all intervals at 120 seconds stopping time.

This time is enough for CPLEX and for 2JDi(90) to reach good results. The means plot

include Tukey HSD intervals with a 95% confidence level. Recall that overlapping intervals

indicates that no statistically significant difference exists among the overlapped means. It can

be seen CPLEX with this amount of time is significantly better than DIG. Our three proposed

size-reduction algorithms are new state-of-the-art as can be seen, although there are some

overlaps. 2JDi(90) is statistically better than 3JD but 2JDi is equivalent to the other two.

However, this plot is for all intervals and instance sizes. Zoomed-in results (not shown due to

reasons of space) show different performances depending on the cases.

 1781

R
el

at
iv

e
P

er
ce

n
ta

g
e

D
ev

ia
ti

o
n

C
P

L
E

X

D
IG

3
JD

2
JD

i

2
JD

i(
9

0
)

-0.02

0.03

0.08

0.13

0.18

0.23

0.28

Figure 1. Means plot and Tukey HSD intervals with a 95% confidence level for the tested serial algorithms. All

instances and intervals with 120 seconds stopping time.

3.2. Parallel algorithms' results

Now we test our proposed M-2JDi(90) parallel version of the 2JDi(90) size-reduction

algorithm, along with parallel version of DIG and CPLEX (M-DIG and M-CPLEX,

respectively). Results are given in Table 4. All parallel methods clearly outperform their serial

counterparts by a significant margin if we compare these results against those given in Table

3. Recall that only two parallel cores are being used and probably better results are expected

in four, six or even eight core settings. We see that, on average, our proposed parallel size-

reduction algorithm produce better results than all other algorithms. M-DIG gives better

results than M-CPLEX only for short CPU times and the situation is reversed when times are

larger. Similar to the serial case, our algorithm M-2JDi(90) produces the best results in all

cases and times except for correlated machines, where M-CPLEX has better results only for

larger CPU times. M-CPLEX also presents poor results for correlated jobs as in the serial

case.

 1782

Table 4. Average Relative Percentage Deviations for parallel algorithms M-CPLEX, M-DIG and M-2JDi(90)

with different CPU time stopping criteria. Bold (italics) figures represent best (worst) results, respectively.

Time Algorithms U(1,100) U(10,100) Jobcorre Machcorre U(100,200) U(100,120) U(1000,1100) Average

15 M-CPLEX 0.66 0.63 1.33 0.37 0.40 0.07 0.04 0.50

M-DIG 0.91 0.51 0.35 0.48 0.26 0.03 0.02 0.37

M-2JDi(90) 0.42 0.10 0.18 0.20 0.11 0.00 0.00 0.15

30 M-CPLEX 0.41 0.33 0.99 0.20 0.29 0.05 0.03 0.33

M-DIG 0.86 0.41 0.24 0.45 0.21 0.03 0.01 0.32

M-2JDi(90) 0.18 -0.01 0.03 0.16 0.08 0.00 0.00 0.06

60 M-CPLEX 0.30 0.18 0.74 0.09 0.15 0.03 0.02 0.22

M-DIG 0.70 0.31 0.16 0.42 0.18 0.02 0.01 0.26

M-2JDi(90) 0.10 -0.07 -0.07 0.14 0.06 0.00 0.00 0.02

120 M-CPLEX 0.23 0.11 0.60 0.04 0.08 0.03 0.01 0.16

M-DIG 0.62 0.18 0.07 0.40 0.14 0.02 0.00 0.20

M-2JDi(90) -0.02 -0.14 -0.14 0.12 0.02 -0.01 -0.01 -0.03

240 M-CPLEX 0.16 0.04 0.47 0.02 0.04 0.01 0.00 0.11

M-DIG 0.57 0.11 -0.01 0.34 0.11 0.01 0.00 0.16

M-2JDi(90) -0.03 -0.16 -0.19 0.07 0.00 -0.01 -0.01 -0.05

300 M-CPLEX 0.08 -0.02 0.35 0.01 0.02 0.01 0.00 0.06

M-DIG 0.56 0.08 -0.04 0.34 0.10 0.01 -0.00 0.15

M-2JDi(90) -0.03 -0.17 -0.20 0.05 -0.01 -0.01 -0.01 -0.05

Figure 2 shows, in this case, an interaction plot between CPU time stopping criterion and the

parallel algorithms. Note that a two factor ANOVA was used in this case. This ANOVA plot

allows to see how M-DIG is significantly better than M-CPLEX for just 15 seconds stopping

time. For 30 seconds both methods are statistically equivalent and they remain so until 300

seconds, where finally M-CPLEX improves the results of M-DIG. In all cases, our proposed

size-reduction algorithm M-2JDi(90) is shown to statistically outperform the other two

methods by a large margin.

M-2JDi(90)

Algorithms

M-CPLEX

M-DIG

R
el

at
iv

e
P

er
ce

n
ta

g
e

D
ev

ia
ti

o
n

-0.1

0.1

0.3

0.5

0.7

15 30 60 120 240 300 sec.

Figure 2. Parallel methods: Means plot and Tukey HSD intervals with 95% confidence level for all instances

and intervals and all tested stopping criteria.

Finally, we present in Figure 3 a comparison between parallel and serial methods. Intervals

are removed to improve readability of the plot. As we can see, parallel versions are most of

 1783

the time better than serial versions. As expected, for large CPU times, most algorithms start to

converge and the advantages of parallel methods diminish.

R
el

at
iv

e
P

er
ce

n
ta

g
e

D
ev

ia
ti

o
n

-0.06

0.14

0.34

0.54

0.74

15 30 60 120 240 300 sec.

Algorithms

CPLEX

DIG

2JDi(90)

M-CPLEX

M-DIG

M-2JDi(90)

Figure 3. Parallel vs. serial algorithms: Means plot for all instances and intervals in all tested stopping times.

We can conclude that our algorithms show a very good performance in all situations, serial,

parallel, with different stopping times and under a large and comprehensive benchmark.

These results are remarkable, especially if we consider the inherent simplicity of the proposed

methods.

4. Conclusions

In this paper we have shown simple size-reduction methods that when coupled with modern

solvers result in state-of-the-art performance for the makespan minimization unrelated parallel

machines scheduling problem in both scenarios, serial and parallel. The methods presented

are very simple as they are just based on the idea of reducing the number of binary variables

in the so common Mixed Integer Linear Programming (MILP) assignment model.

Finally, we want comment that our best performing algorithm, M-2JDi(90), produces, in just

15 seconds of CPU time, average relative percentage deviations with respect to the best

known reference lower bounds reported by the solver of only 0.63% across the 1,400

instances that reach sizes of up to 1000 jobs and 50 machines. With these results we are very

close to effectively solving the R//Cmax problem to practical optimality for large sizes.

Acknowledgements

This work is partially funded by the Spanish Ministry of Science and Innovation, under the

project ―SMPA - Advanced Parallel Multiobjective Sequencing: Practical and Theoretical

Advances‖ with reference DPI2008-03511/DPI. The authors should also thank the IMPIVA -

Institute for the Small and Medium Valencian Enterprise, for the project OSC with reference

IMIDIC/2008/137 and the Polytechnic University of Valencia, for the project PPAR with

reference 3147.

 1784

References

Cheng, T. C.E. and Sin, C. C.S., 1990, ―A state-of-the-art review of parallel-machine

scheduling research‖, European Journal of Operational Research, Vol. 47, No. 3, pp. 271-

292.

Fanjul-Peyro, L. and Ruiz, R., 2010, ―Iterated greedy local search methods for unrelated

parallel machine scheduling‖, European Journal of Operational Research, doi:

10.1016/j.ejor.2010.03.030.

Garey, M. R. and Johnson, D. S., 1979, ―Computers and intractability: A guide to the theory

of NP-completeness‖, Ed. Freeman. San Francisco.

Graham, R. L., Lawler, E. L., Lenstra, J. K., and Rinnooy Kan, A. H. G.,1979, ―Optimization

and approximation in deterministic sequencing and scheduling: A survey‖, Annals of Discrete

Mathematics, Vol. 5, pp. 287-326.

Lenstra, J. K., Rinnooy Kan, A. H. G., and Brucker, P., 1977, ―Complexity of machine

scheduling problems‖, Annals of Discrete Mathematics, Vol. 1, pp. 343-362.

McNaughton, R.,1959, ―Scheduling with deadlines and loss functions‖, Management Science,

Vol. 6, No. 1, pp. 1-12.

Mokotoff, E.,2001, ―Parallel machine scheduling problems: A survey‖, Asia-Pacific Journal

of Operational Research, Vol. 18, No. 2, pp. 193-242.

